
www.manaraa.com

Role-Based Access Control Administration of Security Policies and

Policy Conflict Resolution in Distributed Systems

by

Stephen Sakawa Kibwage

A Dissertation submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

in

Information Systems

Graduate School of Computer and Information Sciences

Nova Southeastern University

2015

www.manaraa.com

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3682683

Published by ProQuest LLC (2015). Copyright in the Dissertation held by the Author.

UMI Number: 3682683

www.manaraa.com

We hereby certify that this dissertation, submitted by Stephen S. Kibwage, conforms to

acceptable standards and is fully adequate in scope and quality to fulfill the dissertation

requirements for the degree of Doctor of Philosophy.

___ _______________

Peixiang Liu, Ph.D. Date

Chairperson of the Dissertation Committee

___ _______________

Gurvirender Tejay, Ph.D. Date

Dissertation Committee Member

___ _______________

James Cannady, Ph.D. Date

Dissertation Committee Member

Approved:

___ _______________

Eric S. Ackerman, Ph.D. Date

Dean, Graduate School of Computer and Information Sciences

Graduate School of Computer and Information Sciences

Nova Southeastern University

2015

www.manaraa.com

An Abstract of a Dissertation Submitted to Nova Southeastern University in Partial

Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Role-Based Access Control Administration of Security Policies and Policy

Conflict Resolution in Distributed Systems

by

Stephen S. Kibwage

January 2015

Security models using access control policies have over the years improved from Role-

based access control (RBAC) to newer models which have added some features like

support for distributed systems and solving problems in older security policy models such

as identifying policy conflicts. Access control policies based on hierarchical roles provide

more flexibility in controlling system resources for users. The policies allow for

granularity when extended to have both allow and deny permissions as well as weighted

priority attribute for the rules in the policies. Such flexibility allows administrators to

succinctly specify access for their system resources but also prone to conflict.

This study found that conflicts in access control policies were still a problem even in

recent literature. There have been successful attempts at using algorithms to identify the

conflicts. However, the conflicts were only identified but not resolved or averted and

system administrators still had to resolve the policy conflicts manually. This study

proposed a weighted attribute administration model (WAAM) containing values that feed

the calculation of a weighted priority attribute. The values are tied to the user,

hierarchical role, and secured objects in a security model to ease their administration and

are included in the expression of the access control policy. This study also suggested a

weighted attribute algorithm (WAA) using these values to resolve any conflicts in the

access control policies. The proposed solution was demonstrated in a simulation that

combined the WAAM and WAA. The simulation’s database used WAAM and had data

records for access control policies, some of which had conflicts. The simulation then

showed that WAA could both identify and resolve access control policy (ACP) conflicts

while providing results in sub-second time. The WAA is extensible so implementing

systems can extend WAA to meet specialized needs. This study shows that ACP conflicts

can be identified and resolved during authorization of a user into a system.

www.manaraa.com

Acknowledgements

This dissertation has been a long journey from the application to join the program

until now. I thank God who created heaven and earth for giving me faith to persevere. For

my wife, Debbie, who sacrificed much to accommodate my being a student for all that

time. To my kids Joel and Ella who just knew that “daddy had homework” and could not

wait for him to be done. To my parents, Samuel and Frida Kibwage, who have yearned

for me to complete my dissertation and for always believing it was possible. My other

family members have been supportive every step of the way with their prayers to God

and their well wishes.

I would like to express my gratitude to my dissertation advisor, Dr. Peixiang Liu,

for working with me to the finish line. His guidance, timely encouragement, and

responsiveness through the processes were invaluable. I would also like to thank my

dissertation committee members, Drs. James Cannady and Gurvirender Tejay, for their

help and support in carefully reviewing my work. I would also like to thank Dr.

Ackerman for providing guidance in the period transitioning from a student to beginning

the dissertation process. I truly am grateful.

I would like to acknowledge my employer Web.com, Inc. for their financial

support when called for. Special thanks to my friend Dr. Diana Makombe for being in my

corner and cheering me on having gone through the process herself. I would also like to

thank the friends who have had encouraging words and kinds deeds to help get me

through.

www.manaraa.com

v

Table of Contents

Abstract iii

Table of Contents v

List of Tables viii

List of Figures ix

Chapters

1. Introduction 1

Background 1

Problem Statement 2

Dissertation Goal 5

Research Questions 6

Relevance and Significance 7

Groups Affected by ACP Conflict 7

Benefits of Resolving ACP Conflicts 7

Promise of Resolution 8

Addition to Knowledgebase 8

Generalizability of Results 9

Originality 10

Barriers and Issues 11

Limitations and Delimitations 12

Limitations 12

Delimitations 13

Definition of Terms 14

Summary 15

2. Review of the Literature 16

Introduction 16

Early RBAC 16

Mandatory Access Control 16

Discretionary Access Control 16

Role-Based Access Control 17

Improvements over RBAC 17

Administrative RBAC ‘97 17

www.manaraa.com

vi

Organizational RBAC 18

Integrated Policy 18

Generalized Temporal RBAC and Geographical RBAC 19

Concrete and Abstract RBAC 19

PolyOrBAC 20

Administrative RBAC 20

NBAC and ZBAC 21

RBAC96 21

Spatially Aware RBAC 22

UARBAC and ACPCDM 23

Residual Problems 24

Policy Conflicts 24

Global Policy 25

ACP Conflict in Collaborative Systems 26

Access Conflict Resolution 28

Adaptation of Results 28

Summary 29

3. Methodology 30

Overview 30

Research Method 30

Designing the Weighted Attribute Algorithm 31

Designing Allowance for Extensible Algorithm 34

Designing the Weighted Attribute Administration Model 35

Consideration for the Distributed System Environment 37

Designing the Simulation Environment 39

Preparing the Seed Data used for Runs through WAA and ACPCDM 41

Collecting Metrics from Runs through WAA and ACPCDM 43

Formats for Presenting Results 47

Resource Specifications 48

Hardware 48

Software 48

Summary 50

www.manaraa.com

vii

4. Results 51

Data Analysis 51

General Observations of the Seed Data used for the Runs 51

Performance of the Algorithms 53

Accuracy in Identifying Conflicts for WAA and ACPCDM 55

Accuracy in Resolving Conflicts using WAA 55

Findings 56

The Delay added by using WAA in User Authorization 57

User Benefits of using WAA 57

Administrator Benefits of using WAA and WAAM 58

Summary of Results 58

5. Conclusions 59

Overview 59

Outcomes 61

Research Question 1 61

Research Question 2 62

Research Question 3 63

Recommendations and Future Research 64

Implication 65

Study Limitations 65

Summary 66

Reference List 67

Appendixes 71

Appendix A: Database Create Tables’ Script 72

Appendix B: Database Create View Script 74

Appendix C: Database Create Stored Procedures’ Script 75

Appendix D: Tools and Components for Weighted Attribute Algorithm

Implementation 84

Appendix E: Authorization Log from Running the Weighted Attribute Algorithm 85

Appendix F: Authorization Log from Runs through ACPCDM 88

Appendix G: List of a User’s ACP used by WAA 91

Appendix H: Code to Generate the Data for the Simulation 96

www.manaraa.com

viii

List of Tables

Table 1. The Values Collected from each Run 43

Table 2. The Collection of Metrics from the Simulation 44

Table 3. Example of ACPs in conflict 51

Table 4. The Common Summary Metrics Collected from the Runs 52

Table 5. The Metrics Collected from the Comparing the Algorithms 52

Table 6. Comparison of Delay added to Authorization Process 53

Table 7. The Summary Metrics Collected from the Weighted Attribute Algorithm 54

Table 8. The Delay Added to Authorization by WAA by on User ACP Count 54

Table 9. Accuracy Comparison of ACP Conflict Identification 55

Table 10. Overall Accuracy of ACP Conflict Resolution 55

Table 11. Accuracy of ACP Conflict Resolution by User ACP 56

www.manaraa.com

ix

List of Figures

Figure 1. Authorization Flowchart using WAA for Conflict Resolution 32

Figure 2. ERD of the Weighted Attribute Administration Model 36

Figure 3. Location of WAA in a Distributed System 37

Figure 4. Determining the Source of User ACP 39

Figure 5. Logical Design for the Simulation Environment 40

Figure 6. Design of the Simulation 41

Figure 7. The Configuration Setting when running ACPCDM 42

Figure 8. The Configuration Setting when running the Weighted Attribute Algorithm 42

www.manaraa.com

1

Chapter 1

Introduction

Background

Role-based access control (RBAC) has served foundationally for newer models

that enforce system security at various levels of improvement. Improvements are needed

in administering security polices (Pérez, Lòpez, Skarmeta, & Pasic, 2010), and detecting

and resolving system authorization conflicts in distributed systems (Juntapremjitt,

Fugkeaw, & Manpanpanich, 2008). RBAC is a paradigm commonly accepted in

enforcing system security because roles provide a way to group features and their

relationships to users of a system (Sandhu, Coyne, Feinstein, & Youman, 1996; Vaidya,

Atluri, Warner, & Guo, 2010). It shows improvement over earlier IS security approaches

like discretionary access control and mandatory access control. RBAC has been used as a

foundation of studies and has been extended into various models such as CABAC

(Concrete and Abstract Based Access Control) introduced by Bouzida, Logrippo, and

Mankovski (2011), and Generalized Temporal Role-Based Access Control (GTRBAC)

by Joshi, Bertino, and Ghafoor (2005). These are also different from Park and Sandhu’s

(2004) UCONABC (usage control) which has found success in the business to consumer

space. There is El Kalam et al.’s (2003) Organization based access control (OrBAC)

which uses RBAC as one of its pillars and has proved useful in geospatial research.

These studies show the acceptance of RBAC and the research that has gone to further

refine it.

Within RBAC-based research, policy conflict occurs when the policies satisfied

by the authorization in a system have actions that are contradictory. If the contradictory

www.manaraa.com

2

access rights are granted to an individual entity, such as a system user, then that user will

experience the effects of policy conflict which are anomalous system behavior (Jajodia,

Samarati, Sapino, & Subrahmanian, 2001).

Policy conflict has since been researched as shown by Wu, Chen, Zhang, and Dai

(2009) and Fan, Liang, Luo, Bo, and Xia (2011). Wu et al. (2009) compare user security

policies in matrix groups by using an algorithm against the matrices to detect security

policy conflicts. According to Wu, et al. (2009), a matrix group is a policy definition

represented as a matrix. Whenever policies need to be compared to determine conflict,

they perform matrix operations to determine the conflict. Fan, et al. (2011) propose an

algorithm, ACPCDM (Access Control Policy Conflict Detection Model), to review the

policies and identify those that have conflicts. This study goes further than the

identification of ACP (Access Control Policy) conflict done by Wu et al. (2009) and Fan

et al. (2011) by finding a way to resolve the policy conflicts using a security

administration model and an extended algorithm.

Problem Statement

According to Wu, Chen, Zhang, and Dai (2009), ACP conflicts occur in situations

where overlapping event conditions or actions end up being contradictory. Fan, Liang,

Luo, Bo, and Xia (2011) identified the conflicts as disaccords in the roles that a user is

assigned. The access control policy (ACP) conflicts occurring in RBAC based studies fall

into two options; cyclic inheritance and separation of duty (Shafiq, Joshi, Bertino, &

Ghafoor, 2005).

RBAC based systems in a distributed environment could end with conflicts in

their ACPs which would cause a system to behave erratically as it relates to security

www.manaraa.com

3

(Shafiq, Joshi, Bertino, & Ghafoor, 2005). Other studies (Fan, Liang, Luo, Bo, & Xia,

2011; Wu, Chen, Zhang, & Dai, 2009) were also in agreement that ACP conflicts occur

in systems and should be resolved. However, attempts to resolve ACP conflicts resulted

in the automation of detecting conflicts for system administrators to resolve (Fan, et al.,

2011, El Kalam, et al., 2003, Wu, et al., 2011). Shafiq, et al. (2005) proposed a solution

that would be external to existing systems but would require policy integration and a

homogenizing process to resolve conflicts.

Bertino, Catania, Ferrari, and Perlasca (2003) proposed a framework within which

their algorithm would resolve conflict. The framework containing their process generally

required that a mapping from an existing system be done and the ACP data imported into

their tool for comparison to identify ACP conflicts. Once the data was in their

framework, the ACPs were then compared using C-Datalog, an object oriented

programing language developed by Greco, Leone, and Rullo (1992). So Bertino, et al.

(2003) identified the problem as worth researching but provided an external solution that

required data mapping from existing security models into their framework. Bertino, et al.

(2003) stated that ACP conflict was a problem but did not attempt to solve it in their

model; instead they cede to the specifications of the system.

In more recent research, ACP conflicts in RBAC systems have been studied (Fan,

et al., 2011; Wu, et al., 2009) showing that ACP conflicts are still worth pursuing. The

studies by Fan, et al. (2011) and Wu, et al. (2009) are close to this problem though these

studies’ results are limited to identifying the conflicts for administrators to correct. Fan,

et al. (2011) algorithm identifies conflicts and also provides detail of the conflict to assist

the administrators in resolving the conflict. The algorithm proposed by Wu, et al. (2009)

www.manaraa.com

4

to identify conflict suggested an implementation that is abstracted from the secured

system so that updates to the system were made independently from the security

algorithm. The algorithms did not offer anything beyond identification of ACP conflict.

Perez, Lòpez, Skarmeta, and Pasic (2010) provided a XAML (Extensible Application

Markup Language) –based solution to administer the ACP of a system but neglected

identifying ACP conflict or providing any options for ACP conflict resolution. This study

proposed improvements to access control by extending the administration of policies

shown by Pérez, Lòpez, Skarmeta, and Pasic (2010) and Li and Mao (2007); and

detecting and resolving conflicts for system authorization in distributed systems (El

Kalam, Deswarte, Baïna, & Kaaniche, 2007).

ACP conflicts occur organically in systems over time with cumulative demands

for information, features, and data access (Fan, Liang, Luo, Bo, & Xia, 2011). These

ACP conflicts though identified must be resolved manually to maintain the usefulness of

the system. Resolving conflicts manually is burdensome for administrators who would

have other tasks to perform. This study looked at ACP conflict in distributed systems and

proposed a solution to automatically resolve the ACP conflict. There is a lack of a unified

solution that includes both an administration model and an algorithm in distributed

systems (Fan, et al., 2011, Oh, Sandhu, & Zhang, 2006, Wu, et al., 2009). The

administration model provided attributes to be used in the algorithm because none of the

existing models considered ACP conflict resolution. This study proposed a unified

solution with an administration model with hierarchical roles as well as an extended

algorithm to find ACP conflicts and calculate weighted priority attribute to use in

resolving ACP conflict in distributed systems.

www.manaraa.com

5

Dissertation Goal

This study brought convergence to the results from previous studies by using an

administration model and an extensible algorithm to resolve ACP conflict. It proposed

combining hierarchical roles that would be central to the systems at a high level of

visibility into an administration model. Additionally, this study proposed that the

administration model would include attributes to support a weighted priority attribute

(WPA) for the algorithm to use in finding and resolving ACP conflict.

This study also proposed that the conflicts in security policies’ permissions and

prohibitions were avoidable but would need both an administration model of hierarchical

roles with attributes to calculate WPA named weighted attribute administration model

(WAAM); and an extended algorithm to resolve any ACP conflicts name weighted

attribute algorithm (WAA). In this study, the values to calculate WPA were calculated

using values provided by a system administrator when a user, role, or object record is

created. The study by Fan, Liang, Luo, Bo, and Xia (2011) used an algorithm in the

attempt to identify ACP conflict but lets the administrators resolve any conflicts. Using

the weighted priority attribute would provide an expressive declaration of precedence to

assist in averting conflict. However should there still be conflict beyond the weighted

priority, a localized algorithm would resolve any conflict by applying prescribed checks

against any attributes to be defined within the algorithm.

The new security administration model improved on the ARBAC02

(Administrative RBAC ’02) presented by Oh, Sandhu, and Zhang (2006) and bind the

resulting administrative model with the algorithm. ARBAC02 does not attempt to resolve

ACP conflict or provide support to resolve ACP conflict. Kern, Schaad, and Moffett

www.manaraa.com

6

(2003) argue that using role hierarchies could be problematic because of directional

inheritance and inadequately defined relationships between a user’s role and job function.

Li and Mao (2007) overcome the issues identified by Kern, Schaad, and Moffett (2003)

with comprehensive design requirements to include flexibility, scalability, acceptability,

and economy of mechanism. Their solution proposes UARBAC (“Unnamed”

Administrative Role-Based Access Control) which separates using a role for access

control from administering a role (Li & Mao, 2007). Bruns, Huth, and Avijit (2011) built

their study by extending UARBAC by simulating plan synthesis and non-atomic

administration. None of these administrative models, ARBAC02 and UARBAC,

addresses conflict resolution (Bruns, Huth, & Avijit, 2011; Li & Mao, 2007; Oh, Sandhu,

& Zhang, 2006). This study proposed to use UARBAC (Li & Mao, 2007) as foundational

research while integrating with the conflict resolution algorithm.

Research Questions

The following research questions were considered in the course of the

investigation for this study. The answers to these questions were placed in the outcomes

section of the conclusion.

1. What are the advantages and disadvantages of implementing WAAM in a RBAC

system?

2. What are the advantages and disadvantages of an RBAC system adopting the

WAA as part of their use authorization?

3. Expecting the number of conflicts a systems user has to grow how would the

proposed WAA resolve ACP conflicts?

www.manaraa.com

7

Relevance and Significance

Groups Affected by ACP Conflict

Research has shown that some solutions uncover problems besides the ones being

solved. An example of this is the Sandhu, Coyne, Feinstein, and Youman (1996) study

which discussed RBAC in the formative stages and resultant benefits yet identified

problems such as a lack of analysis in managing role hierarchies on a unified framework.

The problems identified show that administrators of systems benefiting from RBAC

would be affected positively as would the users of such systems though they would also

be exposed to the problems listed (Sandhu, et al. 1996). The conflicts that go unresolved

would cause the system to misbehave and would affect both users and administrators as

follows:

1. Users with ACP conflicts will have the system misbehave such as by denying

a user access where it is expected (El Kalam, Deswarte, Baïna, & Kaaniche,

2007; Shafiq, Joshi, Bertino, & Ghafoor, 2005).

2. Administrators have to spend expensive time researching or troubleshooting

their systems to find the conflicts whenever such issues arise (Shafiq, Joshi,

Bertino, & Ghafoor, 2005).

Benefits of Resolving ACP Conflicts

For the results of this study wherever implemented, the expectation is that

proprietors should benefit from less administrative demands, better user efficacy, and an

overall simplification of authorization in the security model. For the affected users, the

system would be more useful and their usage more pleasant (El Kalam, Deswarte, Baïna,

& Kaaniche, 2007; Shafiq, Joshi, Bertino, & Ghafoor, 2005). The users should also have

www.manaraa.com

8

a better guarantee of access to pertinent data that would otherwise be denied in the event

of an unresolved conflict (Kuang & Ibrahim, 2009).

This study anticipates these benefits for the users because the access to secured

system features and objects would better reflect their administratively prescribed access

to the system. The administrators who prescribe a system’s access would benefit (Shafiq,

Joshi, Bertino, & Ghafoor, 2005) because they can adjust the ACP proactively in

response to monitoring the authorization logs and making any administrative changes

without having frustrated users making inquiries.

Promise of Resolution

Reviewing the studies in the context of RBAC-based distributed systems would

provide a methodology to better administer security in distributed systems in a way not

addressed by studies in the reviewed literature. Reeder, Bauer, Cranor, Reiter, and Vaniea

(2009) show that using single-level roles for their ACP, conflicts can be resolved using

their algorithm. Many systems use hierarchical policies to manage ACP increasing the

complexity needed to administer them and to resolve conflicts that may arise (Damiani &

Silvestri, 2008; Muppavarapu, Pereira, & Chung, 2010). This complexity is perhaps why

most of the algorithms only go as far as finding the conflict but this study overcomes this

complexity by resolving conflicts at the ACP level rather than higher in the hierarchy.

Addition to Knowledgebase

While OrBAC only suggests a solution for resolving conflict using an algorithm

based on possibilistic logic, it does so without an administration model (El Kalam, et al.,

2003). Abdunabi, Ray, and France (2013) propose using spatio-temporal constraints in

determining users’ ACP but do not address conflict resolution. The solution this study

www.manaraa.com

9

proposes looks to go beyond the literature by resolving conflicts by utilizing both an

administration model and a complementing algorithm that also works in distributed

systems. The success by Reeder, Bauer, Cranor, Reiter, and Vaniea (2009) in resolving

conflict through an algorithm, though in a different context—a file system rather than a

distributed system—shows that success in resolving ACP conflict is achievable for this

study.

The reviewed literature shows attempts in ACP resolving conflicts using

algorithms with some success such as (Reeder, Bauer, Cranor, Reiter, & Vaniea, 2009),

even in distributed systems (Fan, Liang, Luo, Bo, & Xia, 2011), but lack an

administration model. The lack of using both an administration model and an algorithm

to resolve conflict from the available literature is worth pursuing. Researching an

administration model in the RBAC space that concludes in implementation solution

should be a welcome addition.

Generalizability of Results

The proposed results of this study, an administration model with an algorithm in

an inheritable component, was expected to be easy for practitioners to incorporate into

their design and architecture. Should they be in the formative stages of implementing

their distributed system, the data model of the distributed system could extend its security

database objects to include the fields in the data model. Alternatively, they could add

database objects as provided in the data model and integrate to the rest of their existing

data model. The administrator of the system or the implementer would have to carefully

review their existing administration model to ensure that the attributes required by

WAAM are accounted for in the database. These would be both in the storage data

www.manaraa.com

10

objects as well as objects for retrieving ACP so the attribute values would be available to

the algorithm. The algorithm was then encapsulated in a component that could be used in

the system’s authentication processes.

For those with a distributed system already implemented but not yet homogenized

into a single security model, the results from this study would allow for the adoption of

the administration into their existing data model. The changes needed would include

creating new database storage object or extending existing ones to accommodate the data

model as well as changes to a corresponding administrative interface to manage the ACP

data. Implementing the algorithm for existing systems would also include altering

components in the security module to use or implement the resultant component of this

study.

For systems in formative stages, such as design, the model could be used as the

security data model, or extended by adding attributes to existing database objects to meet

WAA’s needs. Likewise, the algorithm was placed in a compiled component that could

be referenced in the system’s authorization component or module.

Originality

This study proposed a synergistic approach of both an administration model and a

conflict resolution algorithm (using both hierarchical roles and a weighted priority

attribute). The studies that have algorithms in resolving policy conflicts such as OrRBAC

(El Kalam, et al., 2003) do not use hierarchical roles while others (Fan, Liang, Luo, Bo,

& Xia, 2011) only identify the policy conflicts. Reeder, Bauer, Cranor, Reiter, and

Vaniea (2009) discuss their specificity precedence improvements for the conflict

resolution in a Windows file system simulation. Building on the Reeder, et al. (2009)

www.manaraa.com

11

study which had conflict resolution was useful for this study to adopt for applications in a

distributed system environment (DSE). The administration model in this study borrowed

liberally from the study by Dekker, Crompton, and Etalle (2008) and extended it to

include the calculation for weighted priority attribute (WPA) to be used in the algorithm

for conflict resolution.

Barriers and Issues

 Availability of a distributed system to use as a subject for this study may be

challenging to find because such systems in practice are usually proprietary. The

stakeholders of such proprietary systems may not consider kindly an outsider inspecting

their system to see if it is performing satisfactorily. Similar to the articles by

Juntapremjitt, Fugkeaw, and Manpanpanich (2008) and Reeder, Bauer, Cranor, Reiter,

and Vaniea (2009), this study employed a simulated environment containing distributed

applications with online user interfaces implementing the security algorithm for the

study.

 In order to prove that the solution would work there were iterations of designs

resulting in an administration model and algorithm to identify and resolve ACP conflict.

The complimentary designs for the administration model and algorithm were used in the

simulation to show how they would work where implemented. The component

implementing the algorithm was iteratively checked in the simulated environment to

ensure performance was acceptable. Generally, systems with specific tasks visible to a

user have to perform within acceptable time constraints. Applying the security model to

existing systems would add to the tasks to be performed within the time constraints. So

performance of the model for authorization is critical to acceptance by practitioners. To

www.manaraa.com

12

overcome the challenge of finding existing systems, building a simulation of a distributed

system provided a baseline for the algorithm’s ability to solve conflicts when they occur.

In the simulated environment, creating the ACP data required creating records via

a generated script; however the script generation could not reliably create ACP conflict.

The automated ACP script generation proved challenging to have ACP conflicts because

creating each ACP entry script used known record identifiers so no conflict was created

for the script. Manually created script entries were appended to the automated script in

order to create conflicted ACP.

Without a baseline with which to compare the performance of the conflict

resolution portion of the algorithm, the metrics recorded to determine performance were

collected over multiple runs through the algorithm. The metrics, such as the number of

runs, the time taken for the runs, the average number of runs, and the number of ACP

evaluated; were then collected and aggregated to find statistical values to represent

performance of the algorithm.

Limitations and Delimitations

Limitations

An administration model with an algorithm containing an inheritable component

in the proposed results is expected to be easy for practitioners to incorporate into their

system design and architecture. The natural limitation of WAA was how extensively the

implementers would like to extend the algorithm.

Using a role hierarchy may not directly conform to an organizations’

administrative concept (Kearn, Schaad, & Moffett, 2003). The large systems which apply

www.manaraa.com

13

their organization’s administrative concepts may end up modifying an RBAC schema

structure so that it fits their situation.

Evaluation as far as resolving conflict could be compared to an algorithm that

resolves conflict such as the one discussed by Reeder, Bauer, Cranor, Reiter, and Vaniea

(2009) though the conflicts there are not based on RBAC. Each system implementing this

model would still need a sound design in its security model as well as sound security

practices so that the system is not subject to abuse by negligent users (Karp, Haury, &

Davis, 2009).

Delimitations

The natural limitation of how extensively the implementers would like to extend

the algorithm would also depend on availability of skilled staff or other resources

necessary to extend the algorithm. This study showed how the proposed model and

algorithm would be implemented but did not go into the implementation of the inherited

components of the extended algorithm.

Should the proposed role hierarchy in the model not directly conform to an

organizations’ administrative concept (Kearn, Schaad, & Moffett, 2003) there would

have to be some accommodations to benefit from this study’s solution. The model’s

implementation would be one where the objects used in storing and retrieving the ACP

values for users’ authorization would have to be altered to provide the attributes needed

by the proposed algorithm to resolve conflict. For example, should the roles not have a

hierarchy from which to retrieve the role attribute for the algorithm, an alternative

attribute would be a ranking of the roles. This would still provide the attribution need for

www.manaraa.com

14

the algorithm to determine which role should get more weight when resolving any

conflicts.

There was a challenge to finding the right fit for comparison with the proposed

solution because it identified and resolved conflict in systems with RBAC based schema.

The other RBAC models and algorithms only identified the conflicts (Fan, Liang, Luo,

Bo, & Xia, 2011; Wu, Chen, Zhang, and Dai, 2009). The model by Fan, et al. (2011)

proved a close match to compare the conflict identification portion of the solution. The

conflict resolution could not directly be compared with what was provided by Reeder,

Bauer, Cranor, Reiter, and Vaniea (2009) because of the differences in managing access

for files in a windows system versus ACP in a RBAC system. Therefore the ACP conflict

resolution portion was measured for accuracy and performance without comparison to

results from an existing study.

Definition of Terms

ACP – Access Control Policy – this is a systems definition of which object can be

accessed by a use and could also define what level of access. A user would generally

have a set of these provided from the authorization process.

Authentication – this is the process by which a user identifies himself to the system

proving a right to use a system (Karp, Haury, & Davis, 2009); such as by providing a user

name (public key) and a password (private key).

Authorization – this is the process by which a system’s security module determines which

features or parts of the system a user can access as well as the level of access (Karp, et

al., 2009) such as read-only or read-write.

www.manaraa.com

15

Policy Conflict – occurs when policies satisfied by the authorization in a system have

actions that are contradictory (Jajodia, Samarati, Sapino, & Subrahmanian, 2001; Wu,

Chen, Zhang, & Dai 2009; Fan, Liang, Luo, Bo, & Xia, 2011).

RBAC – Role-based Access Control – this a methodology of controlling access to parts of

a large system based on the roles that a user is assigned.

Request – this is the action-reaction when a user performs a gesture on a part of the use

interface and the system responds accordingly.

User Session – this is an interactive period beginning when a user authenticates by

signing into a system until they are signed out by a process or by signing out themselves.

Summary

 RBAC has served as foundational to systems security and newer systems use it at

various levels of improvement. Within RBAC-based research, ACP conflict occurs in

systems whereby within a user’s set of ACPs there are contradictory actions allowed on

an object causing the system to misbehave. There have been attempts to automatically

identify these conflicts but there is a lack of research showing how to automatically

resolve the ACP conflict using an administration model and algorithm. This study

proposed a solution to overcome this problem. The users and administrators of systems

implementing the proposed solution would benefit by having consistent behavior and

fewer demands directed to the administrators to identify and correct system anomalies

resulting from ACP conflict.

www.manaraa.com

16

Chapter 2

Review of the Literature

Introduction

 This chapter reviewed published studies in the RBAC space showing the

problems solved over time as well as the prevailing problems. This section reviewed

some Early RBAC studies, some of the Improvements over RBAC that have happened

over the years, some Residual Problems in RBAC that are still lingering in this research

space, and Adaptation of Results from the previous studies that were useful in

formulating the results.

Early RBAC

Some studies such as Bertino, Bettini, Ferrari, and Samarati (1996) considered

access control and discussed temporal access and used discretionary access control

(DAC) along with mandatory access control (MAC) as foundations. RBAC, depending

on the implementation could be either but has elements of both MAC and DAC.

Mandatory Access Control

MAC is where the access is provided by the data being secured and the clearance

level of the user (Atluri, Jajodia, & Bertino, 1997). It was generally used in multi-level

secure military systems where preference is to security over confidentiality (Ferraiolo &

Kuhn, 1992).

Discretionary Access Control

Downs, Rub, Kung, and Jordan (1985) describe DAC as a means of restricting

access to objects based on the identity of the subjects or the groups to which they belong.

www.manaraa.com

17

Users of a system with security based on DAC allowed a user to grant or deny privileges

to system objects that they control without an administrator’s intervention (Ferraiolo &

Kuhn, 1992).

Role-Based Access Control

Organizations have a wide array of needs in terms of security policies of their

systems that would be difficult to meet by either MAC or DAC alone (Ferraiolo & Kuhn,

1992). The introduction of RBAC brought about benefits such as ease of administration

by matching ACP to a role rather than directly to a user (Sandhu, Coyne, Feinstein, &

Youman, 1996). This administration of roles would have to be done by a trained

administrator rather than by passing permissions from one user to another in DAC

(Ferraiolo & Kuhn, 1992). Sandhu, Coyne, Feinstein, and Youman (1996) defined RBAC

as a kind of access control whereby only authorized users are given access to specific

data or resources in a system.

Within RBAC the role hierarchy is a constraint in that when a child role is granted

access to an object, the parent roles also receive that permission. Also, a user assigned to

a particular role automatically receives all the descendant roles in the hierarchy (Sandhu,

Coyne, Feinstein, & Youman, 1996). They further identified lack of information

regarding both configuration and constraints in RBAC systems as problems worth

studying (Sandhu, Coyne, Feinstein, & Youman, 1996).

Improvements over RBAC

Administrative RBAC ‘97

The study by Sandhu, Bhamidipati, Coyne, Ganta, and Youman (1997) proposed

ARBAC97 (Administrative RBAC ’97) to administer the access control of an RBAC-

www.manaraa.com

18

based system. They posited that with enterprise size systems, the roles could number into

the hundreds or thousands so they would need RBAC to manage the roles in the RBAC

(Sandhu, et al., 1997).

Organizational RBAC

Bertino, Bettini, Ferrari, and Samarati (1996) considered dynamism in the model

but would still need new algorithms to help with decentralization and periodic

authorization. El Kalam, et al. (2003) shows the use of RBAC in an organizational

context and calls their resulting model OrBAC. With organization structure usually

having a hierarchy, OrBAC accommodates handling the organizational hierarchies in

their ACPs. OrBAC has provided the basis for other research studies (Capolsini &

Gabillon, 2009; El Kalam, Deswarte, Baïna, & Kaaniche, 2007) around access control

rules based on temporal data such as time and location that use OrBAC and are

referenced in other research with some improvement. El Kalam, et al. (2003) which

proposed OrBAC has improvement over RBAC by adding hierarchy and organizational

context to roles. The El Kalam, et al. (2003) study shows OrBAC as an improvement

based on how the model is setup though still lacking in administration of policies and

enforcement when the policies are violated.

Integrated Policy

Shafiq, Joshi, Bertino, and Ghafoor (2005) proposes an integrated policy for

RBAC systems in what they describe as multi-domain environment, similar to this

study’s distributed system, because different applications collaborate as they perform

their tasks. Shafiq, et al. (2005) describe their approach using an integer programming to

homogenize the ACP across the different applications. The administrators would have to

www.manaraa.com

19

make trade-offs to find a balance between integration into homogeneous polices or

autonomy of the distributed systems (Shafiq, et al., 2005).

Generalized Temporal RBAC and Geographical RBAC

The RBAC study by Joshi, Bertino, and Ghafoor (2005) shows that roles are

important though still inadequate so they proposed Generalized Temporal Role-Based

Access Control (GTRBAC) that brought some improvements over RBAC. Joshi, et al.

(2005) augmented RBAC with time as a dynamic component in the GTRBAC model

alongside the user context to determine access control in a hospital system. The

GTRBAC model would also improve over RBAC in expressiveness and usability (Joshi,

et al., 2005). The GTRBAC would be further improved with GEORBAC (GEOgraphical

Role Based Access Control) which takes into account the location of the subject and

object when considering access control (Damiani, Bertino, Catania, & Perlasca, 2007).

The ACP incorporates the location of the user as the subject, as well as the bound

location of the object (Damiani, Bertino, Catania, & Perlasca, 2007). Cruz, Gjomemo,

Lin, and Orsini (2008) describe a similar access control system that uses global

positioning system to determine location and derive permissions based on other role

attributes the user may have.

Concrete and Abstract RBAC

CABAC, presented by Bouzida, Logrippo, and Mankovski (2011), uses predicate

logic that results in granting and revoking access to users based on the changes in static

data and a dynamic data context. CABAC attempts to combine rules into contexts though

it has trouble when there are conflicts in the policies (Bouzida, Logrippo, & Mankovski,

2011).

www.manaraa.com

20

PolyOrBAC

Damiani and Sylvestri (2008) mention challenges in accommodating systems with

distributed architecture as they developed the GEORBAC model. However, El Kalam,

Deswarte, Baïna, and Kaaniche (2007) accommodate systems with distributed

architecture by employing web services to manage access control for distributed systems

in a collaborative context using PolyOrBAC. An improvement to PolyOrBAC in

expressiveness is the distributed-RBAC that provides single-sign-on to distributed

systems using XACML (eXtensible Access Control Markup Language) which is based

on XAML (Juntapremjitt, Fugkeaw, & Manpanpanich, 2008). Introducing distributed-

RBAC brings dynamism in ACP by emphasizing a decentralized implementation

(Juntapremjitt, Fugkeaw, & Manpanpanich, 2008). Similarly, Pérez, Lòpez, Skarmeta,

and Pasic (2010) bring about a concept whereby the system administrators delegate some

of the administrative tasks to agents at the application level in a distributed system. Fan,

Liang, Luo, Bo, and Xia (2011) propose an algorithm to find conflicts for the

administrators to solve—providing a benefit for the administrators to resolve the conflicts

whenever identified. The studies that describe the newer models provide improvement

over the older RBAC showing a maturing process for the access control discipline though

there is still some space worth investigating.

Administrative RBAC

Some of the improvements in the RBAC administration by Oh, Sandhu, and

Zhang (2006) propose ARBAC02 (Administrative RBAC ’02), which improves over

ARBAC97 by using bottom-up inheritance. ARBAC02 introduces user pool and

permission pool; user pools are special roles that contain permissions at the central

www.manaraa.com

21

system and permission pools that are roles at the distributed system (Oh, Sandhu, &

Zhang, 2006). Users in systems using ARBAC02 would have to be assigned to both a

user pool and a permission pool. ARBAC02 supports hierarchical roles so permissions

are assigned to the lower policies and inherited up the hierarchy (Oh, Sandhu, & Zhang,

2006). Further improvements in RBAC administration are discussed by Li and Mao

(2007) in UARBAC which uses parameters and units in defining its permissions so they

can be delegated to improve scalability. Dekker, Crompton, and Etalle (2008) discuss the

administration of RBAC in distributed systems. They discuss administration in

heterogeneous distributed systems and use a method that begins with applying a security

policy in each of the distributed systems in a distributed systems environment (Dekker,

Crompton, & Etalle, 2008).

NBAC and ZBAC

In the study by Karp, Haury, and Davis (2009), the older models were presented

as NBAC (autheNtication-Based Access Control) which has some of the RBAC solutions

but also brings up its own issues. One of the NBAC issues they (Karp, Haury, & Davis,

2009) identify is role explosion. Role explosion is a situation whereby a system ends up

with overly granular roles or roles that are very similar. They present a solution to the

issues they present in ZBAC (authoriZation-Based Access Control) which restricts users

to specific domains (Karp, Haury, & Davis, 2009).

RBAC96

Jiong and Chen-hua (2012) base their study on RBAC96 and propose a consistent

constraint schema to help administrators in RBAC systems and categorize the constraint

conflicts as either external or internal. Their study defines external conflicts as those

www.manaraa.com

22

occurring “when the configuration of RBAC does not satisfy the constraints defined in

the system” (Jion and Chen-hua, 2012, p2) and internal conflicts occurring when “two or

more constraints are deemed incompatible with each other” (Jion and Chen-hua, 2012,

p2). The approach that Jiong and Chen-hua (2012) offered identified the constraint for

resolution but would need to be automated into an algorithm. The solution from this

study considered that assigning conflicting permissions to a role would be prevented in a

user interface that limits the administrator to the selection of a single permission when

creating an ACP so internal conflicts according to Jiong and Chen-hua (2012) would not

occur. The external conflict is what would be considered in this study because a user

could have direct permissions to an object and be assigned roles that have conflicting

permissions to the same object. This study goes beyond what Jiong and Chen-hua (2012)

proposed because the administration model for this study overcomes the internal conflict

because one role may not have multiple permissions for the same object.

Spatially Aware RBAC

Damiani, Bertino, Catania, and Perlasca (2007) proposed improvements to RBAC

by adding roles and location constraints in determining the access to be granted to the

user by a system. They discussed location-based services and mobile applications

creating a demand for spatially aware systems. They extend role-based access control

(RBAC) by. This extension forms GEO-RBAC (Geographic RBAC) which added a

geographically derived spatial role to the user. Rather than just use the user’s location,

they split position into logical and real whereby the real position is based on geography

and the logical position is computed from the real position to provide some extension to

the spatial location. They also separated the duties of the user by role and also employer

www.manaraa.com

23

hierarchies to simplify role definition. This article does not cover the administrative

operations or moving spatiotemporal extents (Damiani, Bertino, Catania, & Perlasca,

2007).

As use of mobile access to systems is expected to grow, the use of derived

contextual attributes such as geographic location of a user, the local time of the system or

of the user could be part of future studies related to resolving ACP conflict (Abdunabi,

Ray, & France, 2013). A future study could find the possibility of involving attributes

available from a mobile user such as location to determine how to resolve any ACP

conflicts.

UARBAC and ACPCDM

 Li and Mao (2007) introduced UARBAC essentially as a way to use RBAC to

administer RBAC systems. RBAC was presented as policy neutral, meaning it could be

configured to enforce different kinds of policies in simultaneously. UARBAC, as discussed

by Li and Mao (2007), described a tuple as follows: 〈𝐶, 𝑂𝐵𝐽𝑆, 𝐴𝑀〉 where: C is a finite

set of object classes the system supports, for example, {user, role}; OBJS is a mapping

function for C that returns a set of object names such that OBJS(user) returns a set of all

possible user names; and AM which is a function that maps each class to a predefined set

of access modes, for example AM(user) returns {empower, admin} (Li & Mao, 2007).

Fan, Liang, Luo, Bo, and Xia (2011) showed that policy conflict was an existing

problem in current systems. They proposed an algorithm to review an entire authorization

policy and pointing out the discrepancy which they called ACPCDM (ACP Conflict

Detection Model). They used XACML for their policy expression (Fan, et al., 2011).

ACPCDM identified two types of policy conflict: separation of duty and cyclic

www.manaraa.com

24

inheritance. Both of these conflicts were identified using ACPCDM which they proposed.

They identify conflict using ACPCDM model which ran against ACP listed in two files.

Each file represented ACP from different domains that need to be merged. Their conflict

detection includes: removing duplicates, reasoning which determines the conflicts, and

analyzing the results (Fan, et al., 2011). For this study we considered different systems in

a DSE.

Residual Problems

Policy Conflicts

Moffett and Sloman (1994) raise issues regarding management of policies and

point out a need to analyze resulting conflicts in the policies but only present a theoretical

model leaning toward automated management. A later study (Schaad & Moffett, 2002)

posited that resolving the conflict of polices was in delegating authority to the

decentralized applications within the distributed system. Shu, Yang, and Arenas (2009)

declare that the problem of policy conflicts exists. Their article proposes a method for a

conflict detection solution which they implement in a prototype (Shu, Yang, & Arenas,

2009). Policy conflicts were studied more recently by Wu, Chen, Zhang, and Dai (2009)

who contract security policies into matrix groups and then use their algorithm against the

matrices in order to detect ACP conflicts. The checks they used are computationally

intense and could be improved in reducing the calculations used. Fan, Liang, Luo, Bo,

and Xia (2011) propose an algorithm to review the policies and identify the policies that

have conflicts; however they defer to the administrator to resolve the conflict.

The RBAC based studies, while providing improvement, either avoid addressing

policy conflict resolution or work within the prescriptions of a prior model. Conflicts,

www.manaraa.com

25

according to Wu, Chen, Zhang, and Dai (2009), occur in a situation where overlapping

events conditions or actions and any two or more of the actions end up being

contradictory. Fan, Liang, Luo, Bo, and Xia (2011) identifies the conflicts as disaccords

in the roles between permissions and the representative schema representation of a

system’s ACPs. Their proposed ACP conflict detection model (ACPCDM) contributes

identification of the policy conflicts but do not address policy conflict resolution.

The study by Schaad and Moffett (2002) posited that solving the conflict of

polices was in separation of duty controls to the decentralized applications within the

distributed system and integration of administrative mechanisms. The ability to centralize

the administrative mechanisms would make it easier to administer the system from a

single place though decentralizing some administrative function to the systems where

they are relevant would be useful to consider for this study. Abdunabi and Ray (2010)

suggested that developers of the systems were more likely to use technical concepts that

were easier to understand and administrators more likely to use automated approaches.

This could involve running the ACP conflict identification algorithm off hours or when

system usage is low (Abdunabi & Ray, 2010)

Global Policy

The homogenous unification into a global policy as shown by Shafiq, Joshi,

Bertino, and Ghafoor (2005) is largely a process implementation to pool together the

policies of the systems in a multi-domain environment. A multi-domain environment is a

collection of cooperating single domain systems (Shafiq, et al., 2005). The study also

states that the underlying systems must be RBAC based before it could be useful.

www.manaraa.com

26

The multi-domain environment (Shafiq, Joshi, Bertino, & Ghafoor, 2005) was

very similar to this study’s distributed system environment and some elements were

incorporated such as integrating the ACP names across the applications in the system.

Reeder, Bauer, Cranor, Reiter, and Vaniea (2009) discuss specificity precedence for the

conflict resolution in their Windows file system simulation that could be useful in this

study if adopted for applications in a distributed system.

ACP Conflict in Collaborative Systems

The studies reviewed show some improvement but still have some problems

worth investigating: Bertino, Catania, Ferrari, and Perlasca (2003) state that ACP conflict

is a problem but do not attempt to solve it in their model; instead they cede conflict

resolution to the specification of the system. The PolyOrBAC model needs to improve in

detecting and resolving conflicts in security policies in collaborative systems (El Kalam,

et al, 2007). Pérez, Lòpez, Skarmeta, and Pasic (2010) introduced delegated

administration using XACML but without support for distributed systems (Pérez, Lòpez,

Skarmeta, & Pasic, 2010). D-RBAC, presented by Juntapremjitt, Fugkeaw, and

Manpanpanich (2008) still does not address conflict resolution over PolyOrBAC.

CABAC attempts to combine rules into contexts though it has trouble when there are

conflicts in the policies (Bouzida, Logrippo, & Mankovski, 2011).

According to Shafiq, Joshi, Bertino, and Ghafoor (2005), the conflicts in ACP are

classified into four types:

1. Modality conflicts – where positive and negative policies exist in an

authorization;

www.manaraa.com

27

2. Multiple management – occurs when administrators specify conflicting

authorizations for the same roles.

3. Cyclic inheritance – occurs when a subject lower in the hierarchy ends

up with permissions of a subject higher in the hierarchy.

4. Separation of duty – prevents access of an object when there would be

conflict of interest.

Each of these has different causes and may be addressed separately and independently.

The conflicts that occur under RBAC are cyclic inheritance and separation of duty

(Shafiq, Joshi, Bertino, & Ghafoor, 2005) and are the conflicts covered by this study.

Damiani and Sylvestri (2008) mentioned challenges in accommodating systems

with distributed architecture as they extended the GEORBAC model to be motion-aware.

The article still struggled with the separation of duty conflicts. This was an attempt to

mitigate the conflicts by adding constraints in the creation of ACP but admit they were

not able to resolve the conflict (Damiani & Sylvestri, 2008).

The study by Pérez, Lòpez, Skarmeta, and Pasic (2010) proposed a concept of

administrative delegation whereby the system administrators of a distributed system

delegate some of the administrative tasks to users responsible at the application level who

only have to deal with ACPs at the application level. The concept of administrative

delegation could be useful for this study as administrative tasks are performed by

administrators who are functionally closer to the tasks or objects being secured.

www.manaraa.com

28

Access Conflict Resolution

 The studies based on RBAC that recognize conflicted ACP as a problem only

went as far as identifying the conflict. The study by Reeder, Bauer, Cranor, Reiter, and

Vaniea (2009) showed that conflict in access policies could be resolved using an

algorithm. In their study, they simulated the file access policies on Windows and chose to

improve them because of conflicts that came out of divergent polices. They described

ACP as consisting of a set of rules under which users are allowed to access system

resources (Reeder, et al., 2009).

ACP conflict occurs when the user cannot get access to a resource when an action

is allowed in one policy but denied in another (Reeder, et al., 2009). Without conflict

resolution a system would behave unexpectedly. Their study used a Windows

environment which, to mitigate the potentially erratic behavior during ACP conflict, gave

precedence to the deny policies should there be a conflict.

Adaptation of Results

The study by Schaad and Moffett (2002) posited that solving the conflict of

polices would be in separation of duty controls to the decentralized applications within a

distributed system and integration of administrative mechanisms. The ability to centralize

the administrative mechanisms would make it easier to administer the system from a

single place. Abdunabi and Ray (2010) suggested that developers of the systems more

likely used technical concepts that were easier to understand and administrators more

likely to use automated approaches. This involved running the ACP conflict identification

algorithm off hours or when system usage is low (Abdunabi & Ray, 2010)

www.manaraa.com

29

The multi-domain environment (Shafiq, Joshi, Bertino, & Ghafoor, 2005) was

very similar to this study’s distributed system though some elements were incorporated

such as integrating the ACP names across the applications in the system. Reeder, Bauer,

Cranor, Reiter, and Vaniea (2009) discussed specificity precedence for the conflict

resolution in their Windows file system simulation that could be useful in this study if

adopted for applications in a distributed system.

The study by Pérez, Lòpez, Skarmeta, and Pasic (2010) proposes a concept of

administrative delegation whereby the system administrators of a distributed system

delegate some of the administrative tasks to users responsible at the application level who

only have to deal with ACPs at the application level. The concept of administrative

delegation could be useful for this study as administrative tasks are performed by

administrators who are functionally closer to the tasks or objects being secured.

Summary

This chapter reviewed available literature from various periods in the

development of access control in systems. The improvements in access control from

various studies were reviewed from MAC (Ferraiolo & Kuhn, 1992) and DAC (Downs,

Rub, Kung, & Jordan, 1985), which formed the foundation of RBAC, and continuing the

review with UARBAC (Li & Mao, 2007) and ACPCDM (Fan, Liang, Luo, Bo, & Xia,

2011) which were foundational for this study. The residual problems that were identified

from the literature like ACP conflict in collaborative systems of which this study

proposed a solution and how the results could be adapted.

www.manaraa.com

30

Chapter 3

Methodology

Overview

 This chapter discussed the algorithm proposed by this study to answer the

identified research questions. This quantitative study used metrics measuring

performance of the weighted attribute algorithm and weighted attribute administration

model for ACP operations during authorization into a system. The metrics collected from

the simulation that implemented both WAA and WAAM included the number of ACP

evaluated by WAA; the number of runs through the algorithm where each run

represented a user being authorized into a RBAC-based system; the delay added to

authorization by the algorithm; and the number of ACP conflicts resolved vis a vis the

known conflicts for each user. The delay added to the authorization was considered for

performance which the comparison of the number of known ACP conflicts with those

identified was WAA’s identification accuracy. This chapter then discussed the

procedures employed to evaluate WAA’s accuracy and performance, the performance

metrics used, and how these metrics were obtained from an implementation of the

algorithm using a simulation.

Research Method

 This study proposed the weighted attribute algorithm (WAA) and employed the

quantitative method to help answer the research questions identified in Chapter 1. The

overall method was to analyze ACP conflicts in RBAC-based systems then design,

develop, and implement a simulation of WAA as a way to collect evidence supporting the

ability to identify and resolve ACP conflict accurately during user authorization.

www.manaraa.com

31

WAA needed some attributes be added to the ACP described by Li and Mao

(2007) in order to resolve ACP conflicts. Implementing WAA required introducing

attributes available to the ACP resulting in the weighted attribute administration model

(WAAM). The design for WAAM, discussed below, encapsulates the attributes added to

UARBAC (Li & Mao, 2007). To evaluate WAA and WAAM, metrics for accuracy and

performance were collected to see the viability.

 The procedures employed during this investigation follow the patterns used by

Fan, et al. (2011), Reeder, et al. (2009), and by Li and Mao (2007). This study used the

following procedures in designing WAA to identify and resolve ACP conflict along with

its supporting WAAM:

 to identify the metrics needed to evaluate the performance of the algorithm

 to design the simulation environment containing WAA and ACPCDM (Fan, et al.,

2011) to collect evidence for performance evaluation in accuracy and efficiency

 to create the seed dataset, and

 to report metrics for performance evaluation in accuracy and efficiency.

Designing the Weighted Attribute Algorithm

 The design for WAA had three primary objectives in providing RBAC-based

hierarchical systems a solution for ACP conflict resolution: first identify the conflicts to

be resolved, second was to resolve the ACP conflicts, and third was to provide simple

implementation for administrators who choose WAA for their conflict resolution. These

objectives, as accommodated in WAA, are in the flowchart in Figure 1 below. The basis

of the conflict resolution is the weighed priority attribute (WPA) which was derived from

www.manaraa.com

32

the ACP attributes: user position and role hierarchy. Figure 1 below is broken down into

numbered steps such as 1.0 and 2.0 with steps at a lower level of granularity numbered as

4.4 or 4.6.1.

Figure 1. Authorization Flowchart using WAA for Conflict Resolution

 Designing WAA required that each ACP contain attributes to derive WPA. These

attributes: user position, role hierarchy level, and is-auto-resolve flag are used in the

www.manaraa.com

33

comparative portions of the algorithm. The is-auto-resolve flag is an indicator to tell

WAA whether to attempt to resolve the ACP conflict. This allows for administrators to

deem ACP conflicts on specific objects not be resolved by the algorithm. This is useful if

ACPs of an object containing sensitive data, like access to monetary transactions are in

conflict, they would be left in conflict and an administrator’ intervention needed to

correct the ACPs in conflict.

UARBAC, as discussed by Li and Mao (2007), described a tuple as follows:

〈𝐶, 𝑂𝐵𝐽𝑆, 𝐴𝑀〉 where: C is a finite set of object classes the system supports, for example,

{user, role}; OBJS is a mapping function for C that returns a set of object names such

that OBJS(user) returns a set of all possible user names; and AM which is a function that

maps each class to a predefined set of access modes, for example AM(user) returns

{empower, admin} (Li & Mao, 2007). For this study WAA required that the expected

tuple of ACP be extended to: 〈𝐶, 𝑂𝐵𝐽𝑆, 𝐴𝑀, 𝑊𝑃𝐴𝐹〉 where WPAF is the function to

determine the weighted priority attribute (WPA). For instance, WPAF(role, user) would

return a numeric value for WPA. The WPA is derived as shown in step 4.6.1.3 of Figure

1 from the user position and role hierarchy level attributes discussed further in the design

for WAAM below. The WPAF(role, user) function used the following formula to

calculate WPA:

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 = 𝑘1(𝑈𝑠𝑒𝑟𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛) + 𝑘2 (𝑅𝑜𝑙𝑒𝐿𝑒𝑣𝑒𝑙)

For the calculation, k1 and k2 are positive non-zero configurable constants where k1 ≠ k2.

Based on their knowledge of a system’s usage, the administrator would determine that k1

which modifies the user weight is of higher importance than k2.

www.manaraa.com

34

 The WAA is designed to easily integrate into an existing system where a set of

user ACP is provided for user authorization as shown in Step 1.0 of Figure 1. Getting the

set of user ACP would be from the local database if the user is authenticated locally or

from a database in another system in the environment. This achieved enough flexibility to

work for both regardless of where the user’s ACP are obtained from so long as they have

the attributes required to calculate WPA for conflict resolution.

Designing Allowance for Extensible Algorithm

 WAA was designed to be extensible so that implementers could augment the

conflict resolution for those ACPs that are still in conflict after running WAA. This

option which is the extensible algorithm in Step 4.10.3 of Figure 1 provided flexibility to

the implementers who could, by adding or deriving other attributes from the ACP. This

option allowed for implementing systems to add further logic to resolve any ACP

conflicts that WAA cannot resolve. For example, an implementer could have an attribute

on the ACP based on the time the role was created, and could use this attribute in their

implementation of extending WAA.

 The design to integrate with an extensible algorithm called for the implementation

of the extensible algorithm to subscribe to a WAA interface and be added to the

configuration as an available extension to WAA. It would also be limited to being

compiled similarly to the implementation of WAA, so that if Java was used the extensible

algorithm could be extended seamlessly if it were implemented in Java as well. It would

still be possible to use different technologies like Microsoft .Net and Java together but

would add a logical layer of interoperability between the different technologies. This

design recommended that any extensible algorithm be implemented in like technologies,

www.manaraa.com

35

such that a Microsoft .Net implementation of WAA would be extended by an

implementation in Microsoft .Net. The simulation used for this study was compiled using

Microsoft .Net.

Designing the Weighted Attribute Administration Model

 This design for Weighted Attribute Administration Model (WAAM) was made to

complement WAA by providing attribution to the set of ACPs used to authorize a user

into a system. The WAAM extended the UARBAC model discussed by Li and Mao

(2007) as well as hierarchical roles (Damiani, Bertino, Catania, & Perlasca, 2007). This

study combined these concepts into an administration model including adding attributes

from which the weighted priority attribute (WPA) would be derived. Two options were

considered to add attributes for WPA: add new objects with the desired attributes, or

extend existing database objects.

The option to add new objects while plausible would be more challenging to

maintain making it less desirable for administrators. Adding new objects to a database to

contain the attributes for WPA would allow existing related and dependent client objects

to work as before though access to the new objects would require new stored procedures

or access queries. Extending existing objects with the ACP attributes with default values

would allow for backwards compatibility though existing access stored procedure or

queries would have to be altered to accommodate the new attributes. Adding new objects

would also require three new objects that have a 1:1 relationship with existing objects; for

instance, the entity containing the RoleHierearchy would have a 1:1 relationship with the

Role entity and may have to be updated in concert. For this study the attributes that

WAAM provided were added to existing database objects so that queries for user ACP

www.manaraa.com

36

would only be extended by adding the additional fields rather than extending

authorization by joining additional objects. The entity relation diagram representing the

WAAM is presented in Figure 2 below.

Figure 2. ERD of the Weighted Attribute Administration Model

 The design for WAAM called for three fields to be added to an existing RBAC-

based database implementation. These fields would allow for easy implementation for an

existing system because existing stored procedures and queries just need to access a new

field rather than build new queries. These are the three attributes that were used by WAA:

1. The is-auto-resolved attribute which tells the algorithm whether to consider

the ACP for resolution when there is a conflict.

2. The hierarchy level used in calculating the role hierarchy factor in

determining WPA.

3. The position of user used in calculating the user position factor in determining

WPA.

www.manaraa.com

37

The is-auto-resolved flag only needs to be updated along with a record in the

SecurableObject object and all ACP associated with the securable object would share that

attribute. WAA used the is-auto-resolved flag to determine whether to calculate WPA.

Consideration for the Distributed System Environment

A distributed system environment (DSE) is one consisting of multiple systems

that a user can authenticate once and be authorized to perform tasks on any of the systems

based on their ACP. The layout of the distributed system considered is shown in Figure 3

which shows a DSE with WAA implemented in the satellite systems. The primary and

secondary systems are shown to have extended WAA while Node-1 is without an

extension. The Node-n represents any other system that is part of the DSE that

implements WAA and has an option to extend WAA at its administrators’ discretion and

implementation of their choosing.

Figure 3. Location of WAA in a Distributed System

A local system, for this study, is one where the user record of the authenticating user

exists. For example, a user attempting to use the system in Node-1 would make Node-1

the local system for that user’s session. When authorizing at Node-1 in Figure 3 where

www.manaraa.com

38

the user already exists, the ACPs would be retrieved from the local system database in

Node-1. The central user repository would contain all user records for the systems in the

DSE, if so configured. When no central repository is configured in the DSE, the primary

node would function as the central user repository for authentication purposes. The

secondary node could be any node in the system but provides redundancy for the primary

node. The extension is available only where implemented by the administrators and could

differ from one local system to the next depending on additional attributes and logic as

they see fit.

 For a DSE to implement WAA fully, each system would have to extend their

ACP to include the attributes to support WAA by also implementing WAAM. If a DSE

only has some of its constituent systems with WAA, the benefits of ACP conflict

resolution would only apply when both the authenticating system and authorizing system

have WAA and WAAM. The systems where the ACPs are obtained that do not

implement WAAM would be unable to provide the needed attributes to calculate WPA.

 The logic to identify the system from which to obtain a user’s ACPs for

authorization in a distributed environment were encapsulated in Step 1.0 of the flowchart

in Figure 1. The scenarios considered were:

1. Authorizing a user in the local system where the user’s ACPs exist

2. Authorizing where a user is not in the local system but:

a. is in the primary node of the DSE

b. is in a central user repository of the DSE

These scenarios were covered in Figure 4 below:

www.manaraa.com

39

Figure 4. Determining the Source of User ACP

The ACP retrieval, as shown in Figure 4, would obtain all the ACP from the system

where the authentication was attempted. When considering the second scenario where

authentication against a local system fails, authentication would then be attempted against

the primary node (or central user repository, depending on how the DSE is constituted).

Upon successful authentication at the primary node—or central user repository, the ACPs

would be retrieved from there and authorization performed at the local system.

 Consider the same steps in the flow for retrieving the user’s ACP shown in Figure

4 (Step 1.0 of Figure 1); they are all outside of the WAA. This study determined that

where a user’s set of ACP lies is of little significance to WAA in calculating WPA

because the presence of the attributes determined whether WAA could be used.

Designing the Simulation Environment

 The simulation environment was designed to accommodate both WAA from this

study and ACPCDM proposed by Fan et al. (2011). ACPCDM was included to establish

www.manaraa.com

40

a baseline for identifying ACP conflicts of a user during authorization. Figure 5 below

(corresponding with Figure 1 beginning in Step 2.0) shows how the logical components

were arranged to fit in the simulation environment.

Figure 5. Logical Design for the Simulation Environment

The implementation of the DSE is limited to a single node on the DSE. Having both

algorithms in the simulation facilitated use of common data in the user, object, and role

entities which constituted ACP. Each run through the algorithm had a user to obtain a set

of ACP from the common database where the metrics were also collected. These

algorithms were implemented into a combined logic pattern as shown in Figure 6.

www.manaraa.com

41

Figure 6. Design of the Simulation

 This simulation environment contained single database implementing WAAM

for all the ACP data for runs through the algorithms. The script used to create the tables is

in Appendix A:. Appendices B and C contain the scripts used to implement the view and

stored procedures respectively. Appendix D contains the list of tools and related

components as shown in Figure 6 that facilitated executing the simulation application.

Preparing the Seed Data used for Runs through WAA and ACPCDM

In order to create the data to support the ACPs for the simulation, the code in

Appendix H was used to create all the data in the objects needed to support creating

www.manaraa.com

42

users, roles, objects, and their relationships for the simulation. This was run as a console

application to prepare the simulation environment for the algorithm runs to collect the

metrics needed for the study. The program created a script containing SQL Insert

statements for all the data used for the runs. The approach populated objects in the

compiled code corresponding to database objects and then serialized the objects into SQL

Insert statements. The statements were then run into the database to create the user, roles,

objects, and ACP data to support the runs through either algorithm.

The same sets of ACP were used for identifying conflicts using ACPCDM, and

for both identifying and resolving conflicts using WAA. For each run, a different system

user was used providing a different set of ACPs. When changing the algorithm the same

set of users was used guaranteeing that metrics collected are from the same sets of ACP

for the runs. The decision point during the runs to determine which algorithm to use was

placed in the configuration file where the value was edited to the desired algorithm. The

configuration was placed as follows in order to run the ACPCDM algorithm:

 <appSettings>

 <add key="Algorithm" value="Acpcdm"/>

 </appSettings>

Figure 7. The Configuration Setting when running ACPCDM

The algorithm was set as follows for the weighted attribute algorithm:

 <appSettings>

 <add key="Algorithm" value ="WeightedAttribute"/>

 </appSettings>

Figure 8. The Configuration Setting when running the Weighted Attribute Algorithm

This configuration option was simple enough to toggle the algorithm to use for a set of

runs through an algorithm in the simulation.

www.manaraa.com

43

Collecting Metrics from Runs through WAA and ACPCDM

 There were 100 users selected from the database to be used for runs through each

algorithm. From the runs through the algorithms performance and accuracy metrics were

collected to facilitate comparison and analysis of the algorithms. Each user record had its

own set of ACP data based on the roles assigned to the user and the objects accessible to

those roles and their descendants. There were also ACP records that were obtained from a

user record having direct access to a secured object. So obtaining ACP for the 100

different users provided variety in the sets of user ACP, in agreement with what Kothari

(2004) called the principle of local control.

Each run collected these values for use as inputs to derive the performance and

accuracy metrics:

Table 1. The Values Collected from each Run

 Value Collected from Run WAA ACPCDM

1. Number of ACP for the user evaluated in the run x x

2. Known number of conflicts x x

3. Number of conflicts identified x x

4. Number of conflicts resolved x

5. Time taken to identify conflict x x

6. Time taken to resolve conflict x

These collected values had the expectation that for each run the authenticated user had

their own set of ACP to use for authorization. The author tracked the number of ACP

evaluated which was expected to vary by user. From the user’s ACPs we also obtained

the number of known conflicts among the ACPs. The expectation was that the number of

www.manaraa.com

44

known conflicts is greater than or equal to the number of the conflicts resolved. The time

taken to identify conflict was also tracked for both algorithms to facilitate comparison

between the two algorithms. The time taken to resolve conflict and the number of

conflicts resolved could only be collected from WAA because ACPCDM does not

resolve ACP conflict. The time for identifying and resolving ACP conflict were added to

show the delay that running either algorithm would add to a system that places either

algorithm in their authorization module.

The values as shown in Table 1 were collected from runs through both algorithms.

Once collected for both WAA and ACPCDM algorithms, they were aggregated into the

performance metrics shown in Table 2. These metrics collected from the runs through the

algorithms are as follows:

Table 2. The Collection of Metrics from the Simulation

 Metric Collected WAA ACPCDM

1. Number of runs x x

2. Total time taken for the runs (T) x x

3. Average time per run – average delay

added to the authorization

x x

4. Number of ACP evaluated (N) x x

5. Average number of ACPs per run x x

6. Known number of conflicts (Ca) x x

7. Number of conflicts identified (Ci) x x

8. Total time taken to identify conflicts (Ti) x x

9. Average time to identify conflicts per ACP x x

www.manaraa.com

45

Table 2. The Collection of Metrics from the Simulation

 Metric Collected WAA ACPCDM

10. Number of conflicts resolved (Cr) x

11. Time taken to resolve ACP conflict (Tr) x

12. Average time taken per ACP conflict x

13. Average Resolve time taken per run x

The simulation was configured to use one algorithm during execution. For either

algorithm the configuration was set for one of the algorithms as shown in Figure 7 or

Figure 8. The application for the simulation ran in a MS Windows environment from the

command prompt. Then following the logic in Figure 6 the metrics for Table 2 were

collected as follows:

1. Number of runs – this metric is a count of how many times an algorithm was executed

during a simulation run. Each of the runs consisted of a single user’s authorization

process.

2. Total time taken for the runs (T) – this is a sum of the time taken for all the runs

beginning after retrieving the set of ACP of the user and running through the

algorithm.

3. Average time per run (average delay added to the authorization) – this was

determined by the dividing the total time (T) by the number of runs.

4. Number of ACP evaluated (N) – this was the total number of ACPs evaluated from

each run through the algorithm.

5. Average number of ACPs per run – this is the number of ACPs evaluated divided by

the number of runs through the algorithm.

www.manaraa.com

46

6. Known number of conflicts (Ca) – this is the number of ACPs created with conflicts to

represent the conflicts that would occur in systems.

7. Number of conflicts identified (Ci) – this represents the number of conflicted ACPs

that the algorithm identified during the runs.

8. Total time taken to identify conflicts (Ti) – this is the total of all the time that the

algorithm took to identify the ACP conflicts for each run.

9. Average time to identify conflicts per ACP – this metric considered the time it took to

identify ACP conflicts over the number of ACPs considered for all the runs.

10. Number of conflicts resolved (Cr) – this counted how many ACP conflicts were

resolved.

11. Time taken to resolve ACP conflict (Tr) – this tracked all the time taken to resolve

ACP conflict for all the runs.

12. Average time taken per ACP conflict – this considered the time taken to resolve

conflicts divided by the number of ACP.

13. Average Resolve time taken per run – this was calculated from the Tr over the number

of runs to determine how the average time taken for ACP conflict resolution for each

run.

From these metrics in Table 2 the study obtained the following: accuracy of the

algorithm and the performance of the authorization process while using the algorithm.

The performance of the algorithm was from tracking the number of conflicts resolved per

run as well as the delay each run added to authorizing a user. The accuracy of the

algorithm compared the number of conflicts identified to that of known conflicts for each

www.manaraa.com

47

run as well as the conflicts resolved relative to those identified. Thus, we have the

following working definitions:

1. Accuracy for conflict identification: 𝐴𝑖 =
𝐶𝑖

𝐶𝑎
 Where:

a. Ai is the accuracy for identifying ACP conflict

b. Ci is the number of conflicts identified

c. Ca is the number of known conflicts

2. Accuracy for conflict resolution: 𝐴𝑟 =
𝐶𝑟

𝐶𝑖
 Where:

a. Ar is the accuracy for resolving ACP conflict

b. Ci is the number of conflicts identified

c. Cr is the number of conflicts resolved

3. Performance of the algorithm 𝑃 =
𝑇𝑖+𝑇𝑟

𝑁
 where:

a. Ti is the time taken to identify conflict

b. Tr is the timer taken to resolve conflict

c. N is the number of runs

Formats for Presenting Results

 The results of the study proved that the WAAM and WAA provided an approach

that would solve ACP conflict in RBAC systems. The performance and accuracy results

were presented comparing ACPCDM with WAA for all data points relevant to

identifying ACP conflict. Further results for performance and accuracy of resolving ACP

conflict only pertained to WAA. The administrator interaction with the WAAM was

presented in narrative form to show the sequence of events required to create and update

the weighted attributes, and logic of the conclusion.

www.manaraa.com

48

Resource Specifications

 In order to collect performance and accuracy metrics from the runs through the

algorithms the author set up a computing environment with a RDBMS to implement

WAAM and containing user and ACP records, and an IDE to contain the WAA logic and

necessary components to communicate with the database. The simulation for a node in a

DSE was represented on one PC containing the user data and ACP for authorization. (A

DSE with multiple nodes would require that upon user authentication, the ACP for the

user would be retrieved from the authenticating node using the DSE connectivity. The

connectivity between the nodes could be achieved over a LAN/WAN. The ACP for the

user could be retrieved either directly from the remote database or via API on the

authenticating node.) For this effort a personal computer with the following features was

used.

Hardware

 One ASUS Q550L Notebook PC with a single Intel’s Core i7-4500 2.39 GHz

processor was used for this study. It had 8.0 GB of RAM and over 700GB of free space

on the hard drive. The runs in the simulation were performed while the PC was plugged

into direct current rather than using battery power.

Software

 The software used comprised of the following:

 Operating system: Microsoft’s Windows 8.1 running as a 64-bit system

 The languages used were T-SQL for the database and C# for the compiled code

www.manaraa.com

49

 The relational database was Microsoft SQL Server 2012 - 11.0.2218.0 (X64)

Express Edition (64-bit). This also provided the SQL Server Management Studio

which is an IDE (integrated development environment)

 The integrated development environment (IDE) consisted of MS Visual Studio

2012 (Shell Integrated) version 11.0.20727.1 RTMREL. This was used for all the

programming tasks for the compiled portion of the simulation.

 These available components used to perform required tasks for the simulation to

run as an application as well as to simulate runs through the algorithm:

o MS .Net Runtime 4.5.51641 – necessary to use the tools needed for rapid

development using the Visual Studio IDE.

o System Data – is a dynamic link library provided by Microsoft to connect

to the database. This was used to encapsulate all the requests to the

database to read and write data.

o MS Quality Tools Unit Test Framework – these provided a unit testing

feature which was used to target the necessary parts of the simulation for

the algorithm to collect data.

 A logging mechanism was created as part of this study because to collect the data

to meet the objective of calculating performance and accuracy metrics. The data

in this log also had to be easily retrievable and used in a spreadsheet for analysis.

So part of the implementation of WAA and WAAM in this environment was to

collect data at selected points (such as after ACP conflict identification and at

completion) during each run through the authorization process and logged into

one record at the conclusion of each run. These data collected in the

www.manaraa.com

50

AuthenticationLog table (see Appendix E for database implementation)

corresponded with the performance and accuracy metrics in Table 1.

 Documentation of the results was done using Microsoft Office 2010 by copying

the SQL query results into a spreadsheet in MS Excel.

Summary

 The research methodology described the procedures essential to this research

process and how the WAA and supporting WAAM were designed. Following the

procedures also provided the performance and accuracy metrics for qualitative analysis

for WAA and ACPCDM. Following the procedures provided was enough to achieve the

same results from the algorithm in either a single system or in a distributed system

environment.

www.manaraa.com

51

Chapter 4

Results

 This chapter presents the results obtained from following the procedures outlined

in Chapter 3. Following those procedures, including making runs through the algorithms,

this study collected performance metrics from runs through WAA and ACPCDM. This

chapter discusses these metrics along with the findings from analyzing them.

Data Analysis

 The performance values collected from each run through the algorithm provided

details from which we could draw some conclusions when analyzing summary of the

metrics from the entire dataset. This section discussed general observations from the

results, performance of the algorithms, accuracy, and ease of use from the administrator.

General Observations of the Seed Data used for the Runs

 The data used for the runs was common for both algorithms so that any

comparisons in performance and accuracy were from the same inputs. An example of a

user’s set of ACP used for one of the runs is shown in Appendix G:. It shows most of the

ACPs for a user who was assigned roles which in turn had access to objects, as well as

access assigned directly to the user where there was no role. From the user’s ACP in

Appendix G:, a sample of conflicted ACP was extracted and shown in Table 3 below:

Table 3. Example of ACPs in conflict

Object

Id

Object

Name

Access

Mode

Is Auto

Resolved

Position

Rank

Position

Name

Role

Name

Hierarchy

Level

98 Object - 98 Deny 1 2 Executive Role - 35 1

98 Object - 98 Full 1 2 Executive Role - 75 3

www.manaraa.com

52

The data in Table 3 was from the ACP list of a single user instance that that was

subscribed to multiple roles. The expectation here was that the actual person assigned this

user instance only had one user account to authenticate into the system. The ACP in

Table 3 showed that two of the roles that the user is subscribed to have access to the same

object, however the access to the object are not in agreement causing ACP conflict.

There were metrics that were common to the runs of both the algorithms in the

investigation. These are listed in Table 4 below.

Table 4. The Common Summary Metrics Collected from the Runs

Metric Value

Number of Runs 100

Total number of ACP processed 23,644

Average ACP per run 236

Minimum ACP count in the runs 69

Maximum ACP count for the runs 964

Median of the ACP count for the runs 182

The values collected according to Table 1 are in Appendices E and F and are summarized

in Table 5 below.

Table 5. The Metrics Collected from the Comparing the Algorithms

 Metric Collected WAA ACPCDM

1. Number of runs 100 100

2. Total time taken for the runs (T) 36.5122s 1.672s

3. Average time per run 0.3651s 1.672x10
-2

s

4. Number of ACP Evaluated (N) 23,644 23,644

www.manaraa.com

53

Table 5. The Metrics Collected from the Comparing the Algorithms

 Metric Collected WAA ACPCDM

5. Known number of conflicts (Ca) 5,866 5,866

6. Number of conflicts identified (Ci) 5,866 5,866

7. Total time taken to identify conflicts (Ti) 0.2201s 0.2117s

8. Average time to identify conflicts per ACP 3.7521x10
-5

s 3.6089x10
-5

s

9. Number of conflicts resolved (Cr) 5,683

10. Total time taken to resolve ACP conflict (Tr) 34.7956s

11. Average time taken per ACP conflict 6.1227x10
-3

s

12. Average resolve time taken per run 0.3479s

13. Average delay added to authorization 0.3502s 2.12x10
-3

s

These metrics show how the runs through the two algorithms compared.

Performance of the Algorithms

 The algorithms were designed to be part of a system’s user authorization process

so any time taken to run through the algorithm was considered an additional delay to the

authorization. Table 6 represents the delay when the algorithms were used.

Table 6. Comparison of Delay added to Authorization Process

Metric Collected WAA ACPCDM

Total time taken to identify conflicts (Ti) 0.2201s 0.2117s

Average time to identify conflicts per run 2.201 x10
-3

s 2.12x10
-3

s

Average time to identify conflicts per ACP 3.7521x10
-5

s 3.6089x10
-5

s

Total time taken to resolve ACP conflict (Tr) 34.7956s

Average time to resolve ACP conflict per run 0.348s

www.manaraa.com

54

Table 6. Comparison of Delay added to Authorization Process

Metric Collected WAA ACPCDM

Average delay added to authorization 0.3502s 2.12x10
-3

s

Comparing the delay added to authorization when all that is required is identifying the

conflicts shows that on average ACPCDM (2.12x10
-3

s) is marginally faster than WAA

(2.201x10
-3

s) by 8.1x10
-5

s. When considering the conflict resolution which WAA

provided the average overall delay added to authorization is 0.3502s.

Table 7. The Summary Metrics Collected from the Weighted Attribute Algorithm

 ACPs in

Run

Conflicts

Found

Conflicts Found

and Resolved

Delay Added to

Authorization Time

Average 236 58.66 56.83 0.3502s

Minimum 69 7 7 0.0395s

Maximum 964 199 197 1.4162s

Median 182 47 45 0.2866s

Looking at these same metrics but classifying the user based on how many ACP the user

had, there was a direct correlation between the number of ACP that a user had and the

delay that would be added to authorization. The delay added to authorization is the sum

of the time taken to identify the conflict and the time to resolve the conflict.

Table 8. The Delay Added to Authorization by WAA by on User ACP Count

User ACP

Count

Number

of Users ACP

Conflict

Actual

Conflict

Resolved

Average Delay

per User

<= 100 12 1050 164 155 0.1066s

101 - 200 44 6672 1538 1467 0.2112s

201 - 300 29 7073 1970 1897 0.4429s

301 - 400 8 2668 801 785 0.5437s

>400 7 6181 1393 1379 1.2495s

www.manaraa.com

55

Accuracy in Identifying Conflicts for WAA and ACPCDM

 The target for accuracy in identifying ACP conflicts was 100%. The accuracy was

obtained by comparing the actual conflict and the conflicts identified. Using the values

from Table 5, the accuracy results for WAA and ACPCDM are shown below.

Table 9. Accuracy Comparison of ACP Conflict Identification

Formula for Accuracy of

Identifying Conflicted ACP

WAA ACPCDM

Known number of conflicts (Ca) 5,866 5,866

Number of conflicts identified (Ci) 5,866 5,866

Ai =
Ci

Ca

100% 100%

The accuracy from both algorithms is comparable and shows that WAA was able to

identify the ACP conflicts as well as ACPCDM so systems adopting WAA would still

obtain the desired accuracy.

Accuracy in Resolving Conflicts using WAA

 The accuracy score desired was 100% resolution for all conflicts identified though

the results as shown in Table 10 below are different.

Table 10. Overall Accuracy of ACP Conflict Resolution

Accuracy of Identifying Conflicted ACP WAA

Number of conflicts identified (Ci)
5,866

Number of conflicts resolved (Cr)
5,683

www.manaraa.com

56

Accuracy of Identifying Conflicted ACP WAA

Conflict resolution accuracy 𝐴𝑟 =
𝐶𝑟

𝐶𝑖
 96.98%

The accuracy shows that about 3% of conflicts were not resolved by WAA. The ACP

from objects with the is-auto-resolved flag set to false were ignored from resolution by

WAA and but were logged for the administrator.

Looking into the accuracy of ACP conflict resolution further suggested that ACP

conflicts would be more prominent with users with a lower number of ACP as shown in

Table 11 below. The table has the number of ACP a user would have classified into

bands of 100.

Table 11. Accuracy of ACP Conflict Resolution by User ACP

User ACP

Count Range

Number of

Users

ACP

Count

Conflict

Actual

Conflict

Identified

Conflict

Resolved

Resolve

Accuracy

0 - 100 12 1050 164 164 155 94.512%

101 - 200 44 6672 1538 1538 1467 95.384%

201 - 300 29 7073 1970 1970 1897 96.294%

301 - 400 8 2668 801 801 785 98.002%

>400 7 6181 1393 1393 1379 98.995%

From the accuracy metrics collected, the users with significantly higher ACP had higher

conflict resolution accuracy.

Findings

 After following the procedures for the study and performing the analysis above,

the findings are: that there is a delay added to the authorization process, there are benefits

of implementing WAA. The benefits of having ACP conflicts resolved were considered

against the delay experienced in the authentication process.

www.manaraa.com

57

The Delay added by using WAA in User Authorization

 Using WAA for ACP conflict resolution added delay of 0.3502s on average to

user authorizations. The expectation for this delay is that it would continue to decrease as

the administrators correct the ACP conflicts. Because of this average delay that WAA

would add to a system’s authorization, the author recommended that WAA be applied at

the beginning of a session rather than at each request. For research question (RQ) 1, we

found that implementing WAAM in isolation did not provide any benefits to a system

and that WAA would also need to be implemented.

 As the system grows, there is an expectation that there will be new objects, roles,

and users causing the ACP in the system to grow. Looking at RQ 2, WAA from the study

would still be usable because, the ACPs can be processed by WAA at 2.201 x10
-3

s per

ACP. The ACP sets ranging in size from 69 to 964 per user were processed during

authorization with the median ACP set being 182. This wide range shows that there is

room for ACP counts to grow and still provide ample performance using the current

WAA design and configuration. If there are too many ACP for WAA to process in time

that is acceptably for the users, then the option to consider would be to run WAA as part

of administrative tasks instead as part of each authentication.

User Benefits of using WAA

 The systems that implement WAA in their authorization process will provide

ACP sets that are free of conflict. The benefit to the users would be expected behavior

with the removal of system anomalies resulting from ACP conflict. Using WAA provides

users with a working set of ACP without conflicts as any ACP conflicts encountered were

either resolved or removed from the user’s ACPs.

www.manaraa.com

58

Administrator Benefits of using WAA and WAAM

The administrator of the systems that has implemented WAA will benefit from

knowing which ACPs need correcting by monitoring the ACP conflict log. Responding to

the ACP conflicts recorded in the logs provided by WAAM could be an additional task

for the administrators who did not have any ACP conflict monitoring. Considering RQ 2,

WAA logs the conflicts from the user authorizations so that the administrators would

have access to the ACPs that are constituted in conflict. The administrators can then

formulate options to correct the configurations to be free from conflict. The

administrators can then formulate options to correct the configurations to be free from

conflict.

Another anticipated gain from using WAA was to have fewer users requesting

their access to be corrected by the administrator. Correcting the conflict would improve

the system because users will have their ACP conflicts corrected providing access to the

system without having the system behavior altered by ACP conflict. Correcting the ACP

conflicts proactively by the administrator would reduce the number of ACP conflict for

each user.

Summary of Results

 This chapter reviewed the findings from the analysis performed in this study from

the metrics that were collected from runs through WAA. There were comparisons to

ACPCDM in ACP conflict identification in which both algorithms scored 100% in

accurately identified each ACP conflict. The difference in performance for WAA in ACP

conflict identification from that of ACPCDM, taking 8.1x10
-5

s longer per user

authorization, was negligible.

www.manaraa.com

59

Chapter 5

Conclusions

Overview

 This chapter begins with a review of the idea and goals of the study along with the

investigation of the research questions. Also provided is a summary of the analysis and

conclusions from the study. The chapter concludes with recommendations for future

studies, implications of the study, and summary of contributions.

The study began with the idea that as systems get larger administrators of these

systems would, in the course of their administrative activities, inadvertently create

conflicts in the ACP of the system. The conflicts then cause the system to misbehave

when the users affected by the ACP conflict attempt to use the system and their ACPs

have conflict. This study looked at ACP conflict in RBAC-based distributed systems and

proposed a solution to automatically resolve the ACP conflict. The literature available

was lacking a unified solution that includes both an administration model and an

algorithm in distributed systems. The study by Oh, Sandhu, & Zhang (2006) showed an

administration model but did not use hierarchical roles like WAAM. The studies by Fan,

Liang, Luo, Bo, and Xia (2011) and Wu, Chen, Zhang, and Dai (2009) show use of

algorithms to identify ACP conflict but do not resolve them like WAA. This study sought

a solution to this problem and documented the results of the investigation of WAAM and

WAA.

With studies that showed that ACP conflict detection was possible in RBAC (Fan

et al., 2011) and would be logged for administrators to review and take appropriate

www.manaraa.com

60

action. The study by Reeder, Bauer, Cranor, Reiter, and Vaniea (2009) showed that

access conflicts are resolvable in a file access setting so the possibility of having ACP

conflicts resolved in the RBAC-based system would be next step in the natural

progression in studying access control.

 This study sought a solution to resolve ACP conflict in RBAC systems in a DSE

where conflicts were expected as part of the growth in usage systems over time. The

approach used a simulation to prove that implementing WAA and WAAM would be

sufficient to both identify and resolve ACP conflict. This approach of using a simulation

to show results was used before by Reeder, Bauer, Cranor, Reiter, and Vaniea (2009).

Further this study also included in its simulation ACPCDM (Fan, Liang, Luo, Bo, & Xia,

2011) which was an algorithm to identify ACP conflict. Including the ACPCDM in the

simulation allowed for metrics to be collected from the same set of seed data and the

metrics for analysis and comparison.

 The results observed from the simulation showed that as far as identifying ACP

conflict, WAA was comparable to ACPCDM with seemingly negligible difference in

performance. The accuracy for identifying the ACP conflicts was identical so the metrics

collected for conflict resolution distinguished WAA from other algorithms like

ACPCDM (Fan, et al., 2011) and (Wu, Chen, Zhang, and Dai, 2009) which only

identified ACP conflict.

This study also proposed that the conflicts in security policies’ permissions and

prohibitions were avoidable but would need both an administration model of hierarchical

roles with a weighted priority attribute, and an extended algorithm to resolve resulting

conflicts. In this study, the WPA was calculated using values provided by a system

www.manaraa.com

61

administrator when a user, role, or object record was created. The study by Fan, Liang,

Luo, Bo, and Xia (2011) used an algorithm in the attempt to identify ACP conflict but

lets the administrators resolve any conflicts. Using the weighted priority attribute

provided an expressive declaration of precedence to assist in averting conflict. However

if there still was any conflict beyond the weighted priority, an algorithm extending WAA

could be used in a manner localized to the implementing system in the DSE.

 The goal of the study was to propose improvements to the administration of ACP

and to aid in detecting and resolving ACP conflicts in RBAC systems. This was

accomplished by introducing attributes to the role hierarchy and user position objects

used to create the ACP; and having the values from those new attributes used to calculate

the WPA when there is conflict in a user’s ACP. To that end WAAM and WAA in the

simulation environment showed that while the conflicts were identified, not all conflicts

are adequately resolvable using the proposed WAA using only the WPA. Also, for

security reasons some conflicts were configured so that the authorization would not

delegate the conflict resolution for WAA to resolve by setting the is-auto-resolved flag to

false.

Outcomes

 Investigating the data from the simulation provided the following results for the

research questions from Chapter 1. These questions formed the basis of WAA to resolve

ACP conflicts in large RBAC systems.

Research Question 1

The question was: What are the advantages and disadvantages of implementing

WAAM in a RBAC system?

www.manaraa.com

62

1. Implementing WAAM in an RBAC system provides the system with the

advantage of being able to use WAA to identify and resolve ACP conflict.

2. A system implementing WAAM would allow its administrators to quickly

react to fixing the underlying issue of ACP conflicts proactively as they are

encountered.

3. One disadvantage of WAAM is that administrators of implementing systems

must spend the time needed to implement WAAM into their administration

model.

4. Another disadvantage is that there would be an additional item the

administrators have to monitor to ensure the best use experience for their

users. They have to monitor the conflict logs produced by WAA.

Research Question 2

The question was: What are the advantages and disadvantages of an RBAC

system adopting the WAA as part of their use authorization?

1. The main advantage of adopting WAA is that the system will be able to

resolve ACP conflicts for users as they get authorization to use the system.

This would let users into the system while avoiding the anomalies that result

from conflicted ACP.

2. The other advantage is that administrators will have a list of the ACP conflicts

from the logs generated by WAA. This would allow the administrators to use

the data proactively instead of waiting for user complaints before correcting

the conflicted ACPs.

www.manaraa.com

63

3. A disadvantage of using WAA is that it adds a delay to the authorization

process of 0.3502s on average. This delay of 0.3502s was observed using the

simulation environment used for this study. It would be possible that the delay

is negligible if the servers used for implementing systems are more powerful

than the computer used for the simulation.

4. The other disadvantage of using WAA is the administrators or implementers

would have to include WAA into their system design and architecture which

could prove challenging for systems already in use.

Research Question 3

The question was: Expecting the number of conflicts a systems user has to grow

how would the proposed WAA resolve ACP conflicts?

1. The WAAM allows for a growing number of users, roles, securable objects

and the resultant ACP. The values used to calculate the WPA will be set up

when adding roles or positions of users. WAA will use the available attributes

during authorization which is limited to a user’s ACP. So while a system’s

number of users and objects grow it is possible that the average number of

ACPs a user has in the system may not grow as fast. The expectation is that

WAA would continue to process ACPs without noticeable degradation in

system performance during user authorization.

2. The administrator would not be required to perform additional tasks beyond

the attributes used to calculate WPA. So as the number of objects grows each

new object will be assigned to at least one role in the hierarchy or at least one

user will gain access to it. The ACP related to the new object will obtain its

www.manaraa.com

64

attributes from the related user and role records to use for WPA. WAA has no

restriction on the number of ACP it will process once implemented.

3. The administrators have a choice in determining when to authorize a user: on

each request, or once when the user authenticates. For best performance using

WAA, authorizing a user once per session after authentication would be the

recommendation but the administrator would have to decide what option best

meets their security needs. The hope would be that as conflicts are identified

for the administrator, corrective action is taken because the largest delay from

WAA is in resolving the conflicts.

4. The WAA is designed to work in compiled code and should be abstracted

from the storage of the ACP. This allows for the horizontal scaling so that

should there be a need to process more ACP an additional server instance

could be acquired to provide the added computation without additional stress

on the storage beyond basic retrieval for the ACPs.

Recommendations and Future Research

 This WAA could be run as-is buying administrators time to resolve any identified

conflict while providing ACP free of conflicts from their system’s user authorization

process. Implementing the WAAM and WAA would provide these benefits to the users

and administrators of an RBAC-based system. The ACP conflicts encountered such as

shown in Table 3 shows that the user was assigned roles with conflicting permissions to

the same object. Some of the conflict had roles having the same hierarchy so WAA could

not resolve the conflict because the WPA values were identical for the conflicted ACP.

Looking at the data from the accuracy of resolving conflict, additional research would be

www.manaraa.com

65

required to determine other options, including if different attributes could be used to

increase the accuracy of the resolved conflicts from 96.98% closer to 100%. Such

attributes to be considered could be: time when the ACP was granted, or the physical

location of a user. It may also be possible to study the use of the additional attributes and

rules in an extension module to be used if an identified conflict cannot be resolved, or

pass the conflicted ACP to a separate algorithm altogether.

Implication

The empirical data gathered from this investigation succinctly confirms that ACP

conflicts in RBAC systems can be resolved by using WAA to resolve ACP conflicts. The

structure of the data in the role hierarchy could influence the accuracy of resolving the

conflict. If the hierarchical roles allow multiple root nodes, or have a flat hierarchy, the

hierarchy attribute would be similar in many of the roles represented in a user’s ACPs.

The administrators would have to alter the configurable WAA constants as appropriate

and further, the role attributes in order to achieve desired WPA to resolve ACP conflict.

The WAA is designed to be part of the authorization. This would cause a delay in

the authorization when the algorithm runs but still benefits the users and administrators.

If the delay added by implementing WAA in the authorization process is unacceptable, it

could still be used periodically to check a system’s ACP health by identifying the

conflicts. This would be similar to the automated approach to security analysis by

Abdunabi and Ray (2010) whereby the algorithm is run separately from the authorization.

Study Limitations

Three limitations were identified in this study. The first limitation is that the

results were produced from randomized data created via script. The results, if collected

www.manaraa.com

66

from an actual system could vary what has been show in this study. The second limitation

is that the simulation environment used only ran WAA during user authorization.

Collecting the metrics from a fully functioning system would likely produce different

results depending on availability of resources. Third, the simulation environment housed

both WAA and WAAM on the same physical computer so the results may not be

generalizable to DSE with nodes over a LAN/WAN.

Summary

 This dissertation has shown that it is indeed possible to have a solution that

combines an administration model and an algorithm in resolving ACP conflict for large

RBAC-based systems with hierarchical roles in a DSE. Following the studies by Fan et

al. (2013) which provided the ACPCDM for conflict identification and Reeder et al.

(2009) with conflict resolution in a file access environment without role hierarchy, the

natural progression in combining the results of those two studies would bring conflict

resolution to administering RBAC-based systems.

Further, this study has shown that ACP conflicts can indeed be resolved in RBAC

systems although not without challenges because 100% resolution accuracy was not

achieved in all the runs. The algorithm could be extended to increase the resolution

accuracy. It could be worth studying if 100% accuracy is an achievable limit in resolving

ACP conflicts and whether the delay observed in resolving the conflicts can be lowered

further.

www.manaraa.com

67

Reference List

Abdunabi, R. and Ray, I. (2010). A Comparison of Security Analysis Techniques for

RBAC Models. Proceedings of the 2nd Annual Colorado Celebration of Women

in Computing, Golden-Colorado, USA, November 4-5, 2010. Retrieved February

23, 2014. http://www.cs.colostate.edu/~rabdunab/CCWIC2.pdf

Abdunabi, R., Ray, I., and France, R. (2013). Specification and Analysis of Access

Control Policies for Mobile Applications. Proceedings of the 18th ACM

Symposium on Access Control Models and Technologies, 173-184.

Atluri, V., Jajodia, S., and Bertino, E. (1997). Transaction Processing in Multilevel

Secure Databases with Kernelized Architecture: Challenges and Solutions. IEEE

Transactions on Knowledge and Data Engineering, 9(5), 697-708.

Bertino, E., Bettini, C., Ferrari, E., and Samarati, P. (1996). A Temporal Access Control

Mechanism for Database Systems. IEEE Transactions on Knowledge and Data

Engineering, 8(1), 67-80.

Bertino, E., Catania, B., Ferrari, E., and Perlasca, P. (2003). A Logical Framework for

Reasoning About Access Control Methods. ACM Transactions on Information

and System Security, 6(1), 71–127.

Bouzida, Y., Logrippo, L., and Mankovski, S. (2011). Concrete- and abstract-based

access control. International Journal of Information Security, 10(4), 223-238.

Bruns, G., Huth, M., and Avijit, K. (2011). Program Synthesis in Administration of

Higher-Order Permissions. Proceedings of the 16th ACM Symposium on Access

Control Models and Technologies, 41-50.

Capolsini, P. and Gabillon, A. (2009). Security policies for the visualization of Geo Data.

Proceedings of the 2nd SIGSPATIAL ACM GIS 2009 International Workshop on

Security and Privacy in GIS and LBS, 2-11.

Cruz, I. F., Gjomemo, R., Lin, B., and Orsini, M. (2008). A location aware role and

attribute based access control system. GIS '08: Proceedings of the 16th ACM

SIGSPATIAL international conference on Advances in geographic information

systems, 1-2.

Damiani, M. L., Bertino, E., Catania, B., and Perlasca, P. (2007). GEO-RBAC: A

Spatially Aware RBAC. ACM Transactions on Information Systems and Security,

10(1), 1-42.

Damiani, M. L. and Silvestri, C. (2008). Towards movement-aware access control.

SPRINGL '08: Proceedings of the SIGSPATIAL ACM GIS 2008 International

Workshop on Security and Privacy in GIS and LBS, 39-45.

www.manaraa.com

68

Dekker, M. A. C., Crompton, J., and Etalle, S. (2008). RBAC Administration in

Distributed Systems. SAMCAT ‘08: Proceedings of the 13th ACM Symposium on

Access Control Models and Technologies, 93-101.

Downs, D. D., Rub, J., R., Kung, K. C., and Jordan, C. S. (1985). Issues in Discretionary

Access Control. IEEE Symposium on Security and Privacy, 208-218.

El Kalam, A. A., Deswarte, Y., Baïna, A., and Kaaniche, M. (2007). Access Control for

Collaborative Systems: A Web Services Based Approach. IEEE International

Conference on Web Services, 1064-1071.

El Kalam, A. A., et al (2003). Organization based access control. IEEE International

Workshop on Policies for Distributed Systems and Networks, 1-12.

Fan, B., Liang, X., Luo, Y., Bo, Y., and Xia, C. (2011). Conflict Detection Model of

Access Control Policy in Collaborative Environment. 2011 International

Conference on Computational and Information Sciences, 377-381.

Ferraiolo, D. F. and Kuhn, D. R. (1992). Role Based Access Control. 15th National

Computer Security Conference, 554-563.

Greco, S., Leone, N., and Rullo, P. (1992). Complex: An Object-Oriented Logic

Programming System. IEEE Transactions on Knowledge and Data Engineering,

4 (4), 344–359.

Jajodia, S., Samarati, P., Sapino, M. L., Subrahmanian, V. S. (2001). Flexible support for

multiple access control policies. Transactions on Database Systems (TODS), 26

(2), 214-260.

Jiong, Q., and Chen-hua, M. (2012). Detecting and Resolving Constraint Conflicts in

Role-Based Access Control. 2012 International Conference on Affective

Computing and Intelligent Interaction, 10, 1-7.

Joshi, J.B.D., Bertino, E., and Ghafoor, A. (2005). An Analysis of Expressiveness and

Design Issues for the Generalized Temporal Role-Based Access Control Model.

IEEE Transactions on Dependable and Secure Computing, 157-175.

Juntapremjitt, S., Fugkeaw, S., and Manpanpanich, P. (2008). An SSO-capable

Distributed RBAC Model with High Availability across Administrative Domain.

22
nd

 International Conference on Advanced Information Networking and

Applications, 121-126.

Karp, A. H., Haury, H., and Davis, M. H. (2009). From ABAC to ZBAC: The Evolution

of Access Control Models. Technical report HPL-2009-30, HP Labs, February,

2009. Retrieved June 3, 2013, http://www.hpl.hp.com/techreports/2009/HPL-

2009-30.pdf

www.manaraa.com

69

Kern, A., Schaad, A., and Moffett, J. (2003). An Administration Concept for the

Enterprise Role-Based Access Control Model. Proceedings of the Eighth ACM

Symposium on Access Control Models and Technologies (SACMAT 2003), 3-11.

Kothari, C. R. (2004). Research Methodology: Methods and Techniques. (2
nd

 ed.). New

Dheli, India: New Age International.

Kuang, T. P. and Ibrahim, H. (2009). Security privacy access control for policy

integration and conflict reconciliation in health care organizations collaborations.

Proceedings of the 11th International Conference on Information Integration and

Web-based Applications & Services, 750-754.

Li, N. and Mao, Z. (2007). Administration in Role-Based Access Control. Proceedings of

the 2nd ACM Symposium on Information, Computer and Communications

Security, 1-12.

Moffett, J. D. and Sloman, M. S. (1994). Policy Conflict Analysis in Distributed System

Management. Journal of Organizational Computing, 4(1), 1-22.

Muppavarapu, V., Pereira, A. L., and Chung, S. M. (2010). Role-based access control for

a Grid system using OGSA-DAI and Shibboleth. Journal of Supercomputing, 54

(2), 154-179.

Oh, S., Sandhu, R., and Zhang, X. (2006). An Effective Role Administration Model

Using Organization Structure. ACM Transactions on Information and System

Security, 9(2), 113–137.

Park, J. and Sandhu, R. (2004). The UCON-ABC Usage Control Model. ACM

Transactions on Information Systems Security, 7(1), 128-174.

Pérez, M. G., Lòpez, G., Skarmeta, A. F. G, and Pasic, A. (2010). Advanced Policies for

the Administrative Delegation in Federated Environments. Third International

Conference on Dependability, 76-82.

Potel, M. (1996). MVP: Model-View-Presenter: The Taligent Programming Model for

C++ and Java. Retrieved September 28, 2013,

http://www.wildcrest.com/Potel/Portfolio/mvp.pdf

Reeder, R. W., Bauer, L., Cranor, L. F., Reiter, M. K., and Vaniea, K. (2009). Effects of

Access-Control Policy Conflict-Resolution Methods on Policy-Authoring

Usability. CMU-CyLab-09-006. Retrieved February 4, 2012,

http:www.ece.cmu.edu/~lbauer/papers/2009/cylabtr09-semantics.pdf.

Sandhu, R. S., Bhamidipati, V., Coyne, E., Ganta, S., and Youman, C. (1997). The

ARBAC97 Model for Role-Based Administration of Roles: Preliminary

Description and Outline. Proceedings of the Second ACM Workshop on Role-

based Access Control, 41-50.

Sandhu, R. S., Coyne, E. J., Feinstein, H. L., and Youman, C. E. (1996). Role-Based

Access Control Models. IEEE Computer, 29(2) 38-47.

www.manaraa.com

70

Schaad, A. and Moffett, J. D. (2002). A Lightweight Approach to Specification and

Analysis of Role-based Access Control Extensions. SACMAT 2002: 7th ACM

Symposium on Access Control Models and Technologies, 1-12.

Shafiq, B., Joshi, J. B. D., Bertino, E., and Ghafoor, A. (2005). Secure Interoperation in a

Multi-domain Environment Employing RBAC Policies. IEEE Transactions on

Knowledge and Data Engineering, 17(11), 1557-1577.

Shu, C., Yang, E. Y., and Arenas, A. E. (2009). Detecting Conflicts in ABAC Policies

with Rule-Reduction and Binary-Search Techniques. IEEE International

Workshop on Policies for Distributed Systems and Networks, 182-185.

Vaidya, J., Atluri. V., Warner, J., and Guo, Q. (2010). Role Engineering via Prioritized

Subset Enumeration. IEEE Transactions on Dependable and Secure Computing,

300-314.

Wu, B., Chen, X., Zhang, Y., and Dai, X. (2009). An Extensible Intra Access Control

Policy Conflict Detection Algorithm. International Conference on Computational

Intelligence and Security, 483-488.

Yu-Cheng, H., and Gwan-Hwan, H. (2013). Chinese Wall Security Model for Workflow

Management Systems with Dynamic Security Policy. Journal of Information

Science & Engineering, 29(3), 417-440.

www.manaraa.com

71

Appendixes

www.manaraa.com

72

Appendix A: Database Create Tables’ Script

CREATE TABLE AcpConflictLog (

 LogTimeStamp DATETIME NOT NULL Default GetUtcDate(),

 UserId INTEGER NOT NULL,

 SecurableObjectId INTEGER NOT NULL,

 RoleId INTEGER NULL

);

CREATE TABLE AuthenticationLog (

 LogTimeStamp DATETIME NOT NULL DEFAULT GetUtcDate(),

 AcpCount INTEGER ,

 ConflictCount INTEGER,

 ResolveSeconds money,

 AuthenticationSeconds money

);

CREATE TABLE LuAccessMode (

 Id INTEGER NOT NULL,

 Name VARCHAR NULL,

 PRIMARY KEY(Id)

);

CREATE TABLE Position (

 Id INTEGER NOT NULL Identity(1,1),

 [Rank] INTEGER NULL,

 Name VARCHAR NULL,

 PRIMARY KEY(Id)

);

CREATE TABLE [Role] (

 RoleId INTEGER NOT NULL Identity(1,1),

 ParentRoleId INTEGER NOT NULL,

 Name INTEGER NULL,

 HierarchyLevel INTEGER NULL,

 PRIMARY KEY(RoleId)

);

CREATE TABLE RoleObject (

 LuAccessModeId INTEGER NOT NULL,

 SecurableObjectId INTEGER NOT NULL,

 RoleId INTEGER NOT NULL,

 IsAutoResolved Bit Default 0,

 PRIMARY KEY(RoleId, SecurableObjectId, LuAccessModeId)

);

CREATE TABLE SecurableObject (

 SecurableObjectId INTEGER NOT NULL Identity(1,1),

 Name VARCHAR NULL,

 PRIMARY KEY(SecurableObjectId)

);

CREATE TABLE UserRole (

 RoleId INTEGER NOT NULL,

 UserId INTEGER NOT NULL

);

www.manaraa.com

73

CREATE TABLE UserSecurableObject (

 IsAutoResolved bit NOT NULL Default 0,

 UserId INTEGER NOT NULL,

 SecurableObjectId INTEGER NOT NULL,

 LuAccessModeId INTEGER NOT NULL,

 PRIMARY KEY(IsAutoResolved, UserId, SecurableObjectId)

);

CREATE TABLE [User] (

 UserId INTEGER NOT NULL Identity(1,1),

 PositionId INTEGER NOT NULL,

 UserName VARCHAR NULL,

 FirstName VARCHAR NULL,

 LastName VARCHAR NULL,

 [Password] VARCHAR NULL,

 PRIMARY KEY(UserId)

);

go

www.manaraa.com

74

Appendix B: Database Create View Script

CREATE view [dbo].[AccessControlPolicyVw]
as
 select u.UserId, u.UserName, p.PositionId, p.[Rank] 'PositionRank',
so.SecurableObjectId, so.Name 'SecurableObjectName', am.Name 'AccessMode',
uso.IsAutoResolved, 0 'HierarchyLevel',
 0 'RoleId', p.Name 'PositionName', null 'RoleName'
 from dbo.[User] u
 join dbo.Position p on u.PositionId = p.PositionId
 join dbo.UserSecurableObject uso on u.UserId = uso.UserId
 join dbo.LuAccessMode am on uso.LuAccessModeId = am.LuAccessModeId
 join dbo.SecurableObject so on uso.SecurableObjectId =
so.SecurableObjectId

 union

 select u.UserId, u.UserName , p.PositionId, p.[Rank], so.SecurableObjectId,
so.Name 'SecurableObjectName', am.Name 'AccessMode', ro.IsAutoResolved,
rh.HierarchyLevel,
 rh.DescendantRoleId, p.Name 'PositionName', r.Name
 --, ur.RoleId
 from dbo.[User] u
 join dbo.Position p on u.PositionId = p.PositionId
 join dbo.UserRole ur on u.UserId = ur.UserId
 join dbo.[RoleHierarchy] rh on ur.RoleId = rh.RoleId
 join dbo.RoleObject ro on rh.DescendantRoleId = ro.RoleId
 join dbo.LuAccessMode am on ro.LuAccessModeId = am.LuAccessModeId
 join dbo.SecurableObject so on ro.SecurableObjectId =
so.SecurableObjectId
 join dbo.[Role] r on rh.DescendantRoleId = r.RoleId

GO

www.manaraa.com

75

Appendix C: Database Create Stored Procedures’ Script

CREATE procedure [dbo].[Role_readList]
 @ParentRoleId int = null
as
 select RoleId, Name, ParentRoleId, HierarchyLevel
 from [Role]
 where ParentRoleId = ISNULL(@ParentRoleId, ParentRoleId)
GO

CREATE proc [dbo].[Role_read]
(
 @RoleId Int
)
as

select [RoleId], [ParentRoleId], [HierarchyLevel], [Name]
 from [Role]
 where RoleId = @RoleId
GO

CREATE proc [dbo].[Role_insert]
(
 @RoleId Int,
 @ParentRoleId Int = null,
 @HierarchyLevel Int = null,
 @Name Varchar(20)

)
as

 INSERT INTO [dbo].[Role]
 (
 ParentRoleId ,
 HierarchyLevel ,
 Name
)
 VALUES
 (

@ParentRoleId ,
@HierarchyLevel ,
@Name

)

 select SCOPE_IDENTITY() 'RoleId'
GO

CREATE proc [dbo].[LuAccessMode_read]
(
 @LuAccessModeId Int
)
as

 select [LuAccessModeId], [Name]
 from [LuAccessMode]

www.manaraa.com

76

 where LuAccessModeId = @LuAccessModeId
GO

CREATE proc [dbo].[LuAccessMode_insert]
(
 @LuAccessModeId Int,
 @Name Varchar(20)

)
as

 INSERT INTO [dbo].[LuAccessMode]
 (
 Name
)
 VALUES
 (

@Name
)

 select SCOPE_IDENTITY() 'LuAccessModeId'
GO

CREATE proc [dbo].[Position_read]
(
 @PositionId Int
)
as

 select [PositionId], [Rank], [Name]
 from [Position]
 where PositionId = @PositionId
GO

CREATE proc [dbo].[Position_insert]
(
 @PositionId Int,
 @Rank Int = null,
 @Name Varchar(20) = null

)
as

 INSERT INTO [dbo].[Position]
 (
 Rank ,
 Name
)
 VALUES
 (

@Rank ,
@Name

)

 select SCOPE_IDENTITY() 'PositionId'
GO

CREATE proc [dbo].[AuthenticationLog_read]

www.manaraa.com

77

(
 @LogTimeStamp Datetime,
 @AcpCount Int = null,
 @ConflictCount Int = null,
 @ResolveSeconds Money = null,
 @AuthenticationSeconds Money = null

)
as

 select [LogTimeStamp], [AcpCount], [ConflictCount], [ResolveSeconds],
[AuthenticationSeconds]
 from [AuthenticationLog]
GO

CREATE proc [dbo].[AuthenticationLog_insert]
(
 @LogTimeStamp Datetime,
 @AcpCount Int = null,
 @ConflictCount Int = null,
 @ResolveSeconds Money = null,
 @AuthenticationSeconds Money = null

)
as

 INSERT INTO [dbo].[AuthenticationLog]
 (
 LogTimeStamp ,
 AcpCount ,
 ConflictCount ,
 ResolveSeconds ,
 AuthenticationSeconds
)
 VALUES
 (

@LogTimeStamp ,
@AcpCount ,
@ConflictCount ,
@ResolveSeconds ,
@AuthenticationSeconds

)
GO

CREATE proc [dbo].[AcpConflictLog_read]
(
 @LogTimeStamp Datetime,
 @UserId Int,
 @SecurableObjectId Int,
 @RoleId Int = null

)
as

www.manaraa.com

78

 select [LogTimeStamp], [UserId], [SecurableObjectId], [RoleId]
 from [AcpConflictLog]
GO

CREATE proc [dbo].[AcpConflictLog_insert]
(
 @LogTimeStamp Datetime,
 @UserId Int,
 @SecurableObjectId Int,
 @RoleId Int = null

)
as

 INSERT INTO [dbo].[AcpConflictLog]
 (
 LogTimeStamp ,
 UserId ,
 SecurableObjectId ,
 RoleId
)
 VALUES
 (

@LogTimeStamp ,
@UserId ,
@SecurableObjectId ,
@RoleId

)
GO

CREATE proc [dbo].[RoleHierarchy_read]
(
 @RoleId Int,
 @DescendantRoleId Int,
 @HierarchyLevel Smallint

)
as

 select [RoleId], [DescendantRoleId], [HierarchyLevel]
 from [RoleHierarchy]
GO

CREATE proc [dbo].[RoleHierarchy_insert]
(
 @RoleId Int,
 @DescendantRoleId Int,
 @HierarchyLevel Smallint

)
as

 INSERT INTO [dbo].[RoleHierarchy]
 (
 RoleId ,
 DescendantRoleId ,
 HierarchyLevel

www.manaraa.com

79

)
 VALUES
 (

@RoleId ,
@DescendantRoleId ,
@HierarchyLevel

)
GO

CREATE proc [dbo].[SecurableObject_read]
(
 @SecurableObjectId Int
)
as

 select

[SecurableObjectId], [Name]
 from [SecurableObject]
 where SecurableObjectId = @SecurableObjectId
GO

CREATE proc [dbo].[SecurableObject_insert]
(
 @SecurableObjectId Int,
 @Name Varchar(20)

)
as

 INSERT INTO [dbo].[SecurableObject]
 (
 Name
)
 VALUES
 (

@Name
)

 select SCOPE_IDENTITY() 'SecurableObjectId'
GO

CREATE proc [dbo].[RoleObject_read]
(
 @LuAccessModeId Int,
 @SecurableObjectId Int,
 @RoleId Int,
 @IsAutoResolved Bit = null

)
as

 select

[LuAccessModeId], [SecurableObjectId], [RoleId], [IsAutoResolved]
 from [RoleObject]
GO

CREATE proc [dbo].[RoleObject_insert]

www.manaraa.com

80

(
 @LuAccessModeId Int,
 @SecurableObjectId Int,
 @RoleId Int,
 @IsAutoResolved Bit = null

)
as

 INSERT INTO [dbo].[RoleObject]
 (
 LuAccessModeId ,
 SecurableObjectId ,
 RoleId ,
 IsAutoResolved
)
 VALUES
 (

@LuAccessModeId ,
@SecurableObjectId ,
@RoleId ,
@IsAutoResolved

)
GO

create proc [dbo].[User_readByUsername]
 @UserName varchar(20)
as

SELECT [UserId]
 ,[PositionId]
 ,[UserName]
 ,[FirstName]
 ,[LastName]
 ,[Password]
 FROM [dbo].[User]
 where UserName = @UserName

GO

CREATE proc [dbo].[User_read]
(
 @UserId Int
)
as

 select
[UserId], [PositionId], [UserName], [FirstName], [LastName], [Password]
 from [User]
 where UserId = @UserId
GO

CREATE proc [dbo].[User_insert]
(
 @UserId Int,
 @PositionId Int,
 @UserName Varchar(20),
 @FirstName Varchar(20),

www.manaraa.com

81

 @LastName Varchar(20),
 @Password Varchar(20)

)
as

 INSERT INTO [dbo].[User]
 (
 PositionId ,
 UserName ,
 FirstName ,
 LastName ,
 Password
)
 VALUES
 (
@PositionId ,
@UserName ,
@FirstName ,
@LastName ,
@Password
)

 select SCOPE_IDENTITY() 'UserId'
GO

CREATE proc [dbo].[UserSecurableObject_read]
(
 @IsAutoResolved Bit,
 @UserId Int,
 @SecurableObjectId Int,
 @LuAccessModeId Int

)
as

 select
[IsAutoResolved], [UserId], [SecurableObjectId], [LuAccessModeId]
 from [UserSecurableObject]
GO

CREATE proc [dbo].[UserSecurableObject_insert]
(
 @IsAutoResolved Bit,
 @UserId Int,
 @SecurableObjectId Int,
 @LuAccessModeId Int

)
as

 INSERT INTO [dbo].[UserSecurableObject]
 (
 IsAutoResolved ,

www.manaraa.com

82

 UserId ,
 SecurableObjectId ,
 LuAccessModeId
)
 VALUES
 (
@IsAutoResolved ,
@UserId ,
@SecurableObjectId ,
@LuAccessModeId
)
GO

CREATE proc [dbo].[UserRole_read]
(
 @RoleId Int,
 @UserId Int

)
as

 select [RoleId], [UserId]
 from [UserRole]
GO

CREATE proc [dbo].[UserRole_insert]
(
 @RoleId Int,
 @UserId Int

)
as

 INSERT INTO [dbo].[UserRole]
 (
 RoleId ,
 UserId
)
 VALUES
 (
@RoleId ,
@UserId
)
GO

CREATE proc [dbo].[AccessControlPolicyVw_read]
(
 @UserId int
 , @SecurableObjectId int = null
)
as
 select
 UserId, UserName, SecurableObjectId, SecurableObjectName,
AccessMode, IsAutoResolved
 from AccessControlPolicyVw
 where UserId = @UserId

www.manaraa.com

83

 and SecurableObjectId = IsNull(@SecurableObjectId,
SecurableObjectId)
GO

www.manaraa.com

84

Appendix D: Tools and Components for Weighted Attribute

Algorithm Implementation

1. A Microsoft Windows computer with the following specifications:

a. Operating system: Windows 8.1 Pro

b. Memory: 8GB RAM

c. Processor: 4GHz (Intel CORE i7)

d. Model: ASUS Q550L

2. Microsoft SQL Server Management Studio using SQL Server Express to create

manage the relational database and run T-SQL scripts

3. Visual Studio 2012 IDE for the development environment using C# programming

language.

4. Microsoft System components:

a. ADO.Net containing System.Data and System.Data.SqlClient for data

access.

b. System.Generic.Collection for management of object lists

c. System.Linq for lambda expressions on the lists

d. Microsoft.VisualStudio.QualityTools.UnitTestFramework – for creating

and running the unit tests for the runs through the simulation.

www.manaraa.com

85

Appendix E: Authorization Log from Running the Weighted

Attribute Algorithm

ACP

Count

Known

Conflicts

Conflicts

Identified

Conflicts

Resolved

Time to Identify

Conflicts (Seconds)

Time to Resolve

Conflicts (Seconds)

69 7 7 7 0.0002 0.0552

77 8 8 8 0.0003 0.0713

80 12 12 12 0.0003 0.0957

81 12 12 12 0.0003 0.1049

86 16 16 15 0.0001 0.0775

86 11 11 10 0.0004 0.0906

88 11 11 11 0.0001 0.0394

93 18 18 18 0.0001 0.067

95 17 17 13 0.0002 0.1219

95 11 11 10 0.0004 0.0888

100 19 19 19 0.0005 0.146

100 22 22 20 0.0008 0.1751

103 18 18 16 0.0002 0.0574

104 14 14 13 0.0005 0.114

104 21 21 17 0.0002 0.0645

105 17 17 17 0.0009 0.1659

108 16 16 16 0.0002 0.0516

112 17 17 17 0.0004 0.0598

119 18 18 18 0.0002 0.0607

124 25 25 25 0.0007 0.1987

125 24 24 24 0.0011 0.1909

131 36 36 34 0.0004 0.1022

132 18 18 17 0.0003 0.0535

132 28 28 28 0.0004 0.0786

135 31 31 30 0.0003 0.1126

135 31 31 30 0.0008 0.2573

137 28 28 25 0.0003 0.0973

138 27 27 22 0.0009 0.1356

141 33 33 32 0.0009 0.2679

143 33 33 32 0.0003 0.2403

146 35 35 35 0.001 0.2952

146 33 33 30 0.0003 0.1185

148 41 41 41 0.001 0.3395

150 34 34 32 0.0004 0.0976

150 33 33 31 0.0009 0.2763

158 38 38 37 0.0006 0.1204

159 37 37 36 0.0011 0.2906

164 47 47 44 0.0012 0.1693

www.manaraa.com

86

ACP

Count

Known

Conflicts

Conflicts

Identified

Conflicts

Resolved

Time to Identify

Conflicts (Seconds)

Time to Resolve

Conflicts (Seconds)

165 40 40 38 0.0004 0.1827

165 37 37 36 0.0012 0.2989

168 43 43 42 0.0012 0.3502

171 36 36 34 0.0006 0.1206

172 40 40 40 0.0013 0.3343

172 45 45 44 0.0004 0.1349

172 41 41 39 0.0013 0.2885

175 47 47 46 0.0014 0.256

179 41 41 38 0.0004 0.145

179 45 45 42 0.0022 0.1701

180 42 42 40 0.0004 0.1248

182 44 44 38 0.0005 0.1718

182 46 46 44 0.0015 0.34

188 55 55 50 0.0019 0.513

189 48 48 47 0.0004 0.3767

193 48 48 46 0.0004 0.3331

195 55 55 53 0.0006 0.4292

196 52 52 51 0.0005 0.1556

202 52 52 50 0.0008 0.1758

203 53 53 52 0.0005 0.2829

204 53 53 53 0.0006 0.2978

204 55 55 52 0.0005 0.424

209 62 62 58 0.0033 0.4511

210 60 60 58 0.0005 0.1705

211 51 51 49 0.0019 0.2266

219 58 58 53 0.0025 0.4448

220 57 57 56 0.0006 0.4195

221 60 60 57 0.0006 0.3612

224 56 56 55 0.0074 0.3327

228 62 62 59 0.0028 0.5021

239 65 65 63 0.0008 0.4076

240 70 70 68 0.0013 0.2306

244 66 66 62 0.0007 0.4061

245 67 67 63 0.0008 0.4149

249 65 65 64 0.0036 0.5126

252 70 70 70 0.0007 0.5885

252 72 72 68 0.0009 0.567

253 77 77 75 0.0028 0.5155

270 74 74 72 0.003 0.5435

272 81 81 78 0.0034 0.5702

273 84 84 83 0.0017 0.4215

280 77 77 77 0.0043 0.38

www.manaraa.com

87

ACP

Count

Known

Conflicts

Conflicts

Identified

Conflicts

Resolved

Time to Identify

Conflicts (Seconds)

Time to Resolve

Conflicts (Seconds)

282 73 73 71 0.0032 0.5721

288 84 84 78 0.0009 0.6423

290 87 87 84 0.0036 0.4969

290 90 90 83 0.001 0.7252

299 89 89 86 0.0011 0.2755

312 95 95 92 0.0044 0.528

318 96 96 92 0.0042 0.6575

320 96 96 96 0.005 0.4001

323 98 98 94 0.0012 0.3054

339 96 96 96 0.0012 0.4922

340 104 104 102 0.0049 0.5949

356 102 102 100 0.0048 0.6007

360 114 114 113 0.0084 0.5417

816 199 199 197 0.0075 1.1521

839 199 199 197 0.0062 1.41

854 199 199 197 0.0253 1.2242

880 199 199 197 0.0106 1.0236

900 199 199 197 0.0065 1.3274

928 199 199 197 0.0067 1.169

964 199 199 197 0.0316 1.1348

www.manaraa.com

88

Appendix F: Authorization Log from Runs through ACPCDM

ACP

Count

Known

Conflicts

Conflicts

Identified

Time Taken to Identify

Conflicts (Seconds)

69 7 7 0.0003

77 8 8 0.0003

80 12 12 0.0001

81 12 12 0.0005

86 16 16 0.0004

86 11 11 0.0004

88 11 11 0.0001

93 18 18 0.0001

95 17 17 0.0001

95 11 11 0.0004

100 19 19 0.0001

100 22 22 0.0002

103 18 18 0.0001

104 21 21 0.0001

104 14 14 0.0002

105 17 17 0.0001

108 16 16 0.0009

112 17 17 0.0003

119 18 18 0.0002

124 25 25 0.0007

125 24 24 0.0007

131 36 36 0.0002

132 18 18 0.0012

132 28 28 0.0002

135 31 31 0.0008

135 31 31 0.0002

137 28 28 0.0002

138 27 27 0.0008

141 33 33 0.0002

143 33 33 0.0009

146 35 35 0.0009

146 33 33 0.0002

148 41 41 0.0002

150 33 33 0.0016

150 34 34 0.0004

158 38 38 0.0003

159 37 37 0.0011

164 47 47 0.0015

165 40 40 0.0004

165 37 37 0.0012

168 43 43 0.0012

www.manaraa.com

89

ACP

Count

Known

Conflicts

Conflicts

Identified

Time Taken to Identify

Conflicts (Seconds)

171 36 36 0.002

172 45 45 0.0019

172 40 40 0.0003

172 41 41 0.0004

175 47 47 0.0015

179 41 41 0.0004

179 45 45 0.0004

180 42 42 0.0004

182 46 46 0.0004

182 44 44 0.0018

188 55 55 0.0004

189 48 48 0.0015

193 48 48 0.0066

195 55 55 0.0005

196 52 52 0.0016

202 52 52 0.0017

203 53 53 0.0005

204 53 53 0.0017

204 55 55 0.002

209 62 62 0.0011

210 60 60 0.0027

211 51 51 0.0023

219 58 58 0.002

220 57 57 0.0021

221 60 60 0.0006

224 56 56 0.003

228 62 62 0.0007

239 65 65 0.0034

240 70 70 0.0006

244 66 66 0.0025

245 67 67 0.0012

249 65 65 0.0031

252 70 70 0.0007

252 72 72 0.0009

253 77 77 0.0028

270 74 74 0.0034

272 81 81 0.0009

273 84 84 0.001

280 77 77 0.004

282 73 73 0.001

288 84 84 0.0009

290 87 87 0.0034

www.manaraa.com

90

ACP

Count

Known

Conflicts

Conflicts

Identified

Time Taken to Identify

Conflicts (Seconds)

290 90 90 0.0034

299 89 89 0.001

312 95 95 0.0053

318 96 96 0.0041

320 96 96 0.0042

323 98 98 0.0011

339 96 96 0.0046

340 104 104 0.0012

356 102 102 0.0019

360 114 114 0.0055

816 199 199 0.0057

839 199 199 0.0059

854 199 199 0.006

880 199 199 0.0064

900 199 199 0.0295

928 199 199 0.0284

964 199 199 0.0072

www.manaraa.com

91

Appendix G: List of a User’s ACP used by WAA

Object

Id

Object

Name

Access

Mode

Is Auto

Resolved

Position

Rank

Position

Name

Role

Name

Hierarchy

Level

2 Object - 2 Read 1 2 Executive Role - 81 2

5 Object - 5 Read 1 2 Executive Role - 45 1

6 Object - 6 Deny 1 2 Executive Role - 71 1

6 Object - 6 Deny 1 2 Executive Role - 85 4

6 Object - 6 Full 1 2 Executive Role - 86 1

9 Object - 9 Deny 1 2 Executive Role - 35 1

10 Object - 10 Full 1 2 Executive Role - 75 3

10 Object - 10 Read 1 2 Executive Role - 62 1

12 Object - 12 Full 1 2 Executive Role - 86 1

15 Object - 15 Deny 1 2 Executive Role - 91 3

16 Object - 16 Read 1 2 Executive Role - 33 1

19 Object - 19 Read 1 2 Executive Role - 96 1

20 Object - 20 Read 1 2 Executive Role - 21 1

21 Object - 21 Deny 1 2 Executive Role - 61 1

22 Object - 22 Full 1 2 Executive Role - 45 1

23 Object - 23 Read 1 2 Executive Role - 85 4

24 Object - 24 Deny 1 2 Executive Role - 82 3

26 Object - 26 Read 1 2 Executive Role - 91 3

28 Object - 28 Full 1 2 Executive Role - 15 1

28 Object - 28 Full 1 2 Executive Role - 72 2

29 Object - 29 Read 1 2 Executive Role - 55 1

30 Object - 30 Deny 1 2 Executive Role - 25 1

30 Object - 30 Deny 1 2 Executive Role - 82 3

30 Object - 30 Deny 1 2 Executive Role - 95 5

31 Object - 31 Full 1 2 Executive Role - 65 2

32 Object - 32 Full 1 2 Executive Role - 4 1

34 Object - 34 Full 1 2 Executive Role - 15 1

35 Object - 35 Read 1 2 Executive Role - 55 1

36 Object - 36 Deny 1 2 Executive Role - 52 1

36 Object - 36 Deny 1 2 Executive Role - 95 5

37 Object - 37 Full 1 2 Executive Role - 92 4

38 Object - 38 Full 1 2 Executive Role - 21 1

39 Object - 39 Read 1 2 Executive Role - 61 1

41 Object - 41 Full 1 2 Executive Role - 81 2

44 Object - 44 Deny 1 2 Executive Role - 86 1

45 Object - 45 Read 1 2 Executive Role - 71 1

48 Object - 48 Deny 1 2 Executive Role - 75 3

48 Object - 48 Read 1 2 Executive Role - 35 1

48 Object - 48 Read 1 2 Executive Role - 91 3

49 Object - 49 Full 1 2 Executive Role - 62 1

53 Object - 53 Read 1 2 Executive Role - 52 1

www.manaraa.com

92

Object

Id

Object

Name

Access

Mode

Is Auto

Resolved

Position

Rank

Position

Name

Role

Name

Hierarchy

Level

54 Object - 54 Deny 1 2 Executive Role - 92 4

55 Object - 55 Full 1 2 Executive Role - 33 1

58 Object - 58 Full 1 2 Executive Role - 96 1

60 Object - 60 Deny 1 2 Executive Role - 62 1

61 Object - 61 Deny 1 2 Executive Role - 45 1

62 Object - 62 Full 1 2 Executive Role - 85 4

62 Object - 62 Read 1 2 Executive Role - 82 3

63 Object - 63 Read 1 2 Executive Role - 25 1

64 Object - 64 Deny 1 2 Executive Role - 65 2

65 Object - 65 Full 1 2 Executive Role - 35 1

65 Object - 65 Full 1 2 Executive Role - 91 3

66 Object - 66 Deny 1 2 Executive Role - 72 2

66 Object - 66 Read 1 2 Executive Role - 75 3

67 Object - 67 Deny 1 2 Executive Role - 15 1

68 Object - 68 Full 1 2 Executive Role - 55 1

69 Object - 69 Read 1 2 Executive Role - 95 5

70 Object - 70 Deny 1 2 Executive Role - 21 1

71 Object - 71 Deny 1 2 Executive Role - 4 1

71 Object - 71 Full 1 2 Executive Role - 61 1

77 Object - 77 Deny 1 2 Executive Role - 21 1

78 Object - 78 Full 1 2 Executive Role - 61 1

78 Object - 78 Full 1 2 Executive Role - 71 1

80 Object - 80 Full 1 2 Executive Role - 25 1

80 Object - 80 Full 1 2 Executive Role - 82 3

81 Object - 81 Read 1 2 Executive Role - 65 2

82 Object - 82 Deny 1 2 Executive Role - 62 1

84 Object - 84 Read 1 2 Executive Role - 15 1

84 Object - 84 Read 1 2 Executive Role - 72 2

85 Object - 85 Deny 1 2 Executive Role - 55 1

86 Object - 86 Full 1 2 Executive Role - 52 1

86 Object - 86 Full 1 2 Executive Role - 95 5

87 Object - 87 Deny 1 2 Executive Role - 33 1

87 Object - 87 Full 1 2 Executive Role - 91 3

87 Object - 87 Read 1 2 Executive Role - 92 4

88 Object - 88 Read 1 2 Executive Role - 4 1

90 Object - 90 Deny 1 2 Executive Role - 96 1

93 Object - 93 Read 1 2 Executive Role - 45 1

94 Object - 94 Deny 1 2 Executive Role - 85 4

95 Object - 95 Deny 1 2 Executive Role - 71 1

96 Object - 96 Deny 1 2 Executive Role - 96 1

98 Object - 98 Deny 1 2 Executive Role - 35 1

98 Object - 98 Full 1 2 Executive Role - 75 3

99 Object - 99 Read 1 2 Executive Role - 62 1

www.manaraa.com

93

Object

Id

Object

Name

Access

Mode

Is Auto

Resolved

Position

Rank

Position

Name

Role

Name

Hierarchy

Level

101 Object - 101 Full 1 2 Executive Role - 82 3

102 Object - 102 Full 1 2 Executive Role - 25 1

103 Object - 103 Read 1 2 Executive Role - 65 2

104 Object - 104 Deny 1 2 Executive Role - 91 3

104 Object - 104 Read 1 2 Executive Role - 33 1

105 Object - 105 Read 1 2 Executive Role - 72 2

106 Object - 106 Read 1 2 Executive Role - 15 1

107 Object - 107 Deny 1 2 Executive Role - 55 1

107 Object - 107 Full 1 2 Executive Role - 52 1

108 Object - 108 Full 1 2 Executive Role - 95 5

108 Object - 108 Read 1 2 Executive Role - 96 1

108 Object - 108 Read 1 2 Executive Role - 92 4

109 Object - 109 Read 1 2 Executive Role - 21 1

110 Object - 110 Deny 1 2 Executive Role - 61 1

110 Object - 110 Read 1 2 Executive Role - 4 1

111 Object - 111 Full 1 2 Executive Role - 45 1

112 Object - 112 Deny 1 2 Executive Role - 82 3

112 Object - 112 Read 1 2 Executive Role - 81 2

112 Object - 112 Read 1 2 Executive Role - 85 4

113 Object - 113 Deny 1 2 Executive Role - 25 1

114 Object - 114 Full 1 2 Executive Role - 65 2

116 Object - 116 Deny 1 2 Executive Role - 71 1

116 Object - 116 Full 1 2 Executive Role - 72 2

117 Object - 117 Full 1 2 Executive Role - 15 1

118 Object - 118 Read 1 2 Executive Role - 55 1

119 Object - 119 Deny 1 2 Executive Role - 25 1

119 Object - 119 Deny 1 2 Executive Role - 35 1

119 Object - 119 Deny 1 2 Executive Role - 95 5

120 Object - 120 Full 1 2 Executive Role - 65 2

120 Object - 120 Full 1 2 Executive Role - 75 3

121 Object - 121 Read 1 2 Executive Role - 62 1

125 Object - 125 Deny 1 2 Executive Role - 52 1

126 Object - 126 Full 1 2 Executive Role - 92 4

126 Object - 126 Read 1 2 Executive Role - 33 1

127 Object - 127 Full 1 2 Executive Role - 21 1

127 Object - 127 Read 1 2 Executive Role - 61 1

129 Object - 129 Read 1 2 Executive Role - 96 1

132 Object - 132 Full 1 2 Executive Role - 45 1

132 Object - 132 Full 1 2 Executive Role - 62 1

133 Object - 133 Read 1 2 Executive Role - 85 4

134 Object - 134 Read 1 2 Executive Role - 71 1

136 Object - 136 Read 1 2 Executive Role - 35 1

137 Object - 137 Deny 1 2 Executive Role - 75 3

www.manaraa.com

94

Object

Id

Object

Name

Access

Mode

Is Auto

Resolved

Position

Rank

Position

Name

Role

Name

Hierarchy

Level

137 Object - 137 Read 1 2 Executive Role - 91 3

138 Object - 138 Full 1 2 Executive Role - 62 1

138 Object - 138 Full 1 2 Executive Role - 72 2

142 Object - 142 Full 1 2 Executive Role - 4 1

143 Object - 143 Full 1 2 Executive Role - 33 1

146 Object - 146 Full 1 2 Executive Role - 96 1

148 Object - 148 Full 1 2 Executive Role - 21 1

149 Object - 149 Read 1 2 Executive Role - 61 1

150 Object - 150 Deny 1 2 Executive Role - 45 1

150 Object - 150 Full 1 2 Executive Role - 85 4

151 Object - 151 Read 1 2 Executive Role - 82 3

152 Object - 152 Deny 1 2 Executive Role - 65 2

152 Object - 152 Read 1 2 Executive Role - 25 1

154 Object - 154 Full 1 2 Executive Role - 91 3

155 Object - 155 Deny 1 2 Executive Role - 72 2

156 Object - 156 Deny 1 2 Executive Role - 15 1

157 Object - 157 Full 1 2 Executive Role - 55 1

157 Object - 157 Read 1 2 Executive Role - 95 5

160 Object - 160 Deny 1 2 Executive Role - 4 1

163 Object - 163 Read 1 2 Executive Role - 52 1

164 Object - 164 Deny 1 2 Executive Role - 92 4

166 Object - 166 Full 1 2 Executive Role - 71 1

168 Object - 168 Deny 1 2 Executive Role - 81 2

170 Object - 170 Deny 1 2 Executive Role - 62 1

172 Object - 172 Read 1 2 Executive Role - 86 1

175 Object - 175 Full 1 2 Executive Role - 35 1

175 Object - 175 Full 1 2 Executive Role - 91 3

176 Object - 176 Deny 1 2 Executive Role - 33 1

176 Object - 176 Read 1 2 Executive Role - 75 3

179 Object - 179 Deny 1 2 Executive Role - 96 1

182 Object - 182 Read 1 2 Executive Role - 45 1

183 Object - 183 Deny 1 2 Executive Role - 85 4

187 Object - 187 Deny 1 2 Executive Role - 21 1

187 Object - 187 Deny 1 2 Executive Role - 91 3

188 Object - 188 Deny 0 2 Executive

0

188 Object - 188 Full 1 2 Executive Role - 61 1

188 Object - 188 Read 1 2 Executive Role - 62 1

190 Object - 190 Full 1 2 Executive Role - 25 1

190 Object - 190 Full 1 2 Executive Role - 82 3

191 Object - 191 Read 1 2 Executive Role - 65 2

192 Object - 192 Deny 1 2 Executive Role - 62 1

193 Object - 193 Deny 1 2 Executive Role - 91 3

194 Object - 194 Read 1 2 Executive Role - 72 2

www.manaraa.com

95

Object

Id

Object

Name

Access

Mode

Is Auto

Resolved

Position

Rank

Position

Name

Role

Name

Hierarchy

Level

195 Object - 195 Deny 1 2 Executive Role - 55 1

195 Object - 195 Read 1 2 Executive Role - 15 1

196 Object - 196 Full 1 2 Executive Role - 52 1

196 Object - 196 Full 1 2 Executive Role - 95 5

197 Object - 197 Deny 1 2 Executive Role - 33 1

197 Object - 197 Read 1 2 Executive Role - 92 4

198 Object - 198 Read 1 2 Executive Role - 21 1

199 Object - 199 Deny 1 2 Executive Role - 61 1

199 Object - 199 Read 1 2 Executive Role - 4 1

www.manaraa.com

96

Appendix H: Code to Generate the Data for the Simulation

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using KibwageDis.SqlData.Entities;

namespace KibwageDis.DataCreator
{
 class Maxes
 {
 public int AcpRole = 800;
 public int AcpUser = 200;
 public int Objects = 200;
 public int Roles = 100;
 public int Users = 500;
 }

 class Program
 {
 static void Main(string[] args)
 {
 string fileName =
System.Configuration.ConfigurationManager.AppSettings["output"] + "gr.sql";
 if (File.Exists(fileName)) File.Delete(fileName);
 File.AppendAllText(fileName, TableNameDeletes());
 var mo = new MasterObject() { Max = new Maxes() };
 mo.Objects = DataObjects(fileName, mo.Max.Objects); // 200 records
 mo.Roles = DataRoles(fileName, mo.Max.Roles); // 100
 DataAcpsByRole(fileName, mo); // 950
 mo.Users = DataUsers(fileName, mo.Max.Users); // 500
 DataUserRoles(fileName, mo);
 DataAcpsByUser(fileName, mo);
 }

 private static void DataAcpsByUser(string fileName, MasterObject mo)
 {
 File.AppendAllText(fileName, Environment.NewLine + "-- ACPs by user" +
Environment.NewLine);
 int acpCount = 0;
 var rnd = new Random();
 while (acpCount++ < mo.Max.AcpUser)
 {
 int uid = rnd.Next(1, mo.Users.Count);
 var user = mo.Users.Find(u => u.UserId == uid);
 int oid = rnd.Next(1, mo.Objects.Count);
 var secObject = mo.Objects.Find(o => o.SecurableObjectId == oid);
 var userObject = new UserSecurableObject
 {
 IsAutoResolved = (acpCount % 5 != 0),
 LuAccessModeId = (acpCount % 3 + 1),
 SecurableObjectId = secObject.SecurableObjectId,
 UserId = user.UserId
 };

www.manaraa.com

97

 string line = string.Format(@"INSERT INTO
[dbo].[UserSecurableObject]
([IsAutoResolved],[UserId],[SecurableObjectId],[LuAccessModeId]) VALUES({0},
{1},{2},{3});
",
userObject.IsAutoResolved ? 1 : 0, userObject.UserId,
userObject.SecurableObjectId, userObject.LuAccessModeId);
 File.AppendAllText(fileName, line);
 }

 if (acpCount < 50)
 foreach (var user in mo.Users.FindAll(u => u.PositionId < 3))
 {
 foreach (var secObject in mo.Objects)
 {
 var userObject = new UserSecurableObject
 {
 IsAutoResolved = (acpCount % 5 != 0),
 LuAccessModeId = (acpCount % 3 + 1),
 SecurableObjectId = secObject.SecurableObjectId,
 UserId = user.UserId
 };
 string line = string.Format(@"INSERT INTO
[dbo].[UserSecurableObject]
([IsAutoResolved],[UserId],[SecurableObjectId],[LuAccessModeId]) VALUES({0},
{1},{2},{3});
",
 userObject.IsAutoResolved ? 1 : 0, userObject.UserId,
userObject.SecurableObjectId, userObject.LuAccessModeId);
 File.AppendAllText(fileName, line);
 if (acpCount++ > 50)
 return;
 }

 }
 }

 private static void DataUserRoles(string fileName, MasterObject mo)
 {
 var rnd = new Random();
 int acpCount = 0;
 var urs = new List<UserRole>();
 foreach (var user in mo.Users)
 {
 // set roles for the user
 int roleCount = rnd.Next(6, 12);
 for (int i = 0; i < roleCount; i++)
 {
 var role = mo.Roles[rnd.Next(mo.Roles.Count)];
 var ur = new UserRole { RoleId = role.RoleId, UserId =
user.UserId };
 if (!urs.Exists(u => u.RoleId == ur.RoleId && u.UserId ==
ur.UserId))
 {
 urs.Add(ur);
 string line = string.Format("INSERT INTO [dbo].[UserRole]
([RoleId],[UserId]) VALUES ({0},{1});\n", ur.RoleId, ur.UserId);
 File.AppendAllText(fileName, line);

www.manaraa.com

98

 acpCount++;
 Console.WriteLine("Acp {0}", acpCount);
 }
 }
 }

 }

 class MasterObject
 {
 public List<Role> Roles { get; set; }
 public List<SecurableObject> Objects { get; set; }
 public List<User> Users { get; set; }

 public Maxes Max { get; set; }
 }

 private static List<SecurableObject> DataObjects(string fileName, int max)
 {
 File.AppendAllText(fileName, TableNameIdStart(Ts.SecObj));
 // create objects
 var items = new List<SecurableObject>();
 for (int i = 1; i < max + 1; i++)
 {
 var role = new KibwageDis.SqlData.Entities.SecurableObject {
SecurableObjectId = i, Name = NameGet("Object", i) };
 items.Add(role);
 string line = string.Format("INSERT INTO [dbo].[SecurableObject]
(SecurableObjectId, [Name]) VALUES ({0}, '{1}');\r",
 role.SecurableObjectId, role.Name);
 File.AppendAllText(fileName, line);

 }
 File.AppendAllText(fileName, TableNameIdStop(Ts.SecObj));
 return items;
 }

 private static List<Role> DataRoles(string fileName, int max)
 {
 var items = new List<Role>();
 File.AppendAllText(fileName, TableNameIdStart(Ts.Role));
 // create roles
 for (int i = 1; i < max + 1; i++)
 {
 var role = new KibwageDis.SqlData.Entities.Role { RoleId = i,
HierarchyLevel = 1, ParentRoleId = 0, Name = NameGet("Role", i) };
 if (i > 1)
 role.ParentRoleId = 1;
 if (i > 14)
 role.ParentRoleId = i - 10;
 if (i > 30)
 role.ParentRoleId = i - 20;
 if (i > 40)
 role.ParentRoleId = (i % 10) + 10;
 if (i > 60)
 role.ParentRoleId = i - 10;
 items.Add(role);

www.manaraa.com

99

 string line = string.Format("INSERT INTO [dbo].[Role] (RoleId,
[ParentRoleId],[HierarchyLevel] ,[Name]) VALUES ({0}, {1}, {2}, '{3}');\r",
 role.RoleId, role.ParentRoleId == 0 ? "null" :
role.ParentRoleId.ToString(), role.HierarchyLevel, role.Name);
 File.AppendAllText(fileName, line);
 }
 File.AppendAllText(fileName, TableNameIdStop(Ts.Role));
 return items;
 }

 private static List<User> DataUsers(string fileName, int max)
 {
 var items = new List<User>();
 File.AppendAllText(fileName, TableNameIdStart(Ts.User));
 // create roles
 for (int i = 1; i < max + 1; i++)
 {
 var role = new KibwageDis.SqlData.Entities.User { FirstName = "Fn
" + i.ToString(), LastName = "Ln " + i.ToString(),
 Password= "qweNM<123", UserName = NameGet("User", i), UserId =
i, PositionId = 5 };
 if (i % 20 == 4)
 role.PositionId = 3;
 if (i % 40 == 6)
 role.PositionId = 4;
 if (i % 50 == 2)
 role.PositionId = 2;
 if (i % 100 == 5)
 role.PositionId = 1;
 items.Add(role);
 string line = string.Format("INSERT INTO [dbo].[User] (UserId,
[PositionId] ,[UserName] ,[FirstName] ,[LastName] ,[Password]) VALUES ({0}, {1},
'{2}', '{3}', '{4}', '{5}');\r",
 role.UserId, role.PositionId == 0 ? "null" :
role.PositionId.ToString(), role.UserName, role.FirstName, role.LastName,
role.Password);
 File.AppendAllText(fileName, line);
 }
 File.AppendAllText(fileName, TableNameIdStop(Ts.User));
 return items;
 }

 private static void DataAcpsByRole(string fileName, MasterObject mo)
 {
 File.AppendAllText(fileName, Environment.NewLine + "-- ACPs by role" +
Environment.NewLine);
 // create roles
 var acps = new List<KibwageDis.SqlData.Entities.RoleObject>();
 foreach (var role in mo.Roles)
 {
 // get how many objects the role should have access to
 //int maxObjects = Math.Min(15, (new Random()).Next(1,
mo.Objects.Count));
 int maxObjects = (new Random()).Next(4, 12);
 Console.WriteLine("Role {0} MaxObjects {1}", role.RoleId,
maxObjects);
 int objectCount = 0;
 while(objectCount < maxObjects)

www.manaraa.com

100

 {
 int oid = (new Random()).Next(1, mo.Objects.Count);
 var obj = mo.Objects.Find(o => o.SecurableObjectId == oid);
 var acp = new KibwageDis.SqlData.Entities.RoleObject
 {
 IsAutoResolved = true,
 LuAccessModeId = (acps.Count % 3 +1), // get only Read,
Write, Deny
 RoleId = role.RoleId,
 SecurableObjectId = obj.SecurableObjectId
 };

 if (acps.Exists(ro => ro.RoleId == acp.RoleId &&
ro.SecurableObjectId == acp.SecurableObjectId))
 continue; // skip because the ACP is already in the system
and insert will fail

 string line = string.Format(@"INSERT INTO [dbo].[RoleObject]
([LuAccessModeId], [SecurableObjectId], [RoleId],[IsAutoResolved]) VALUES ({0},
{1}, {2}, {3});
",
 acp.LuAccessModeId, acp.SecurableObjectId, acp.RoleId,
acp.IsAutoResolved ? 1 : 0);

 if (acps.Count < mo.Max.AcpRole + 1)
 {
 objectCount++;
 acps.Add(acp);
 File.AppendAllText(fileName, line);
 }
 else break;
 }
 }
 File.AppendAllText(fileName, Environment.NewLine);
 }

 private struct Ts
 {
 public const string
 Role = "Role",
 SecObj = "SecurableObject",
 User = "[User]";
 }
 private static string TableNameDeletes()
 {
 string retVal = @"
delete from dbo.RoleObject
delete from dbo.[UserRole]
delete from [dbo].[UserSecurableObject]
delete from dbo.SecurableObject
delete from dbo.[Role]
delete from dbo.[User]

";
 return retVal;
 }

 private static string TableNameIdStart(string tableName)

www.manaraa.com

101

 {
 string retVal = string.Format(@"
set IDENTITY_INSERT dbo.{0} on
", tableName);
 return retVal;
 }

 private static string TableNameIdStop(string tableName)
 {
 string retVal = string.Format(@"set IDENTITY_INSERT dbo.{0} off
", tableName);
 return retVal;
 }

 private static string NameGet(string tableName, int i)
 {
 string retVal = string.Format("{0} -{1,4}", tableName, i);
 return retVal;
 }
 }

}

